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Summary 
This deliverable D2.5 describes details about the uncertainty and robustness (U&R) of 
the platforms/algorithms/tools that forecast and nowcast weather-related natural 
hazards. It is a follow-up of the Deliverable report D2.2, which contained a preliminary 
assessment of U&R. A thorough survey of U&R aspects by developers of the 
platforms/algorithms/tools showed that a common methodology to assess uncertainty 
and robustness could not be developed. Reasons for this were among others: (i) the 
different concepts to forecast natural hazards, (ii) the data requirements (historic 
period, spatial coverage, type of data), and (iii) state of development of 
algorithms/tools. However, it came out that there was similarity in the design of the 
uncertainty assessment for almost all hazards, that is, comparing re-forecasts with 
observations, or a proxy for observations, using re-analysis data or simulation output. 
Results from these comparisons on uncertainty are reported for the 
platforms/algorithms/tools, and summarized in a table. Next, robustness, i.e. if 
platforms/algorithms/tools are transferable in space and time (towards a future 
climate), is described based upon existing literature (running the weather forecast 
platforms was beyond ANYWHERE). The developers concluded that none of the 
platforms/algorithms/tools uses a fully physically-based approach, which implies that 
these have to be parameterized. Hence, robustness was approached by exploring if 
platforms/algorithms/tools can be parameterized in any region in any time. Some 
algorithms/tools appeared to be more robust (e.g. storm surges) than others. 
Parameters of some platforms/algorithms/tools are regularly updated and are therefore 
by default able to cope with new situations in light of a changing future climate. Re-
calibration of parameters from weather forecast platforms warrants a re-calibration of 
some downstream applications, for example, several algorithms/tools that forecast 
natural hazards. The robustness analysis of forecasting compound weather events 
brought light that this topic is still rather new on the research agenda. Robustness is 
an inherent part of weather forecasting platforms, incl. all the feedbacks in the system, 
and hence these are implicitly included in the weather forecasts that drive possibly 
coinciding or cascading natural hazards. Examples of compound wet and dry natural 
hazards and their pathways are described, which could be used later to assess 
robustness of forecasting these events. 
Operationalizability of each platform/algorithm/tool has been presented in terms of 
development stage, uses, and required data/resources. The development stage of 
slightly more than 50% of the platforms/algorithms/tools has been proven in an 
operational environment. About 10% of the algorithms/tools are not validated in 
relevant environment yet. 
The deliverable concludes with some examples on how natural hazards can be 
translated into impacts for large-scale applications (pan-European, regional) and 
following different approaches (bottom-up and top-down). Some pan-European maps 
providing information on vulnerability are described (population density, critical 
infrastructure). In the bottom-up approach these maps were used to show, for example, 
how forecasted air quality can be converted into forecasted impacts on people.   
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1 Introduction 

This deliverable report addresses the following topics: 

• an assessment of uncertainty of forecasted weather and climate-induced hazards 
and associated impacts considering various geo-climatic settings across Europe to 
support existing decision-making processes and complementing and enhancing 
existing technologies. 

• an assessment of robustness of the algorithms to forecast natural hazards and 
their associated impacts under worst-case climate change projections (frequency 
and severity of future extreme events) and/or coinciding natural hazards. 

• operationalizability of the platforms/algorithms/tools that forecast and nowcast 
weather and climate-induced hazards. 

• large-scale impact forecasting, how to move from hazards to impact over Europe. 

Uncertainty reflects a state of imperfect knowledge, which is caused by a lack of data, 
either not available or not accessible, or from not incorporating all what is known or 
even foreseeable (e.g. IPCC, 2018). Robustness is the ability of a system to generate 
outcome (e.g. forecasts) that remain valid under different or changing environmental 
conditions (e.g. future climate under global change, compound or cascading events), 
or describes the degree to which the system behaviour remains acceptable valid in 
spite of mutated conditions. The challenge of developing a reliable Multi-Hazard Early 
Warning System is to include forecast tools/algorithms that have a low uncertainty and 
high robustness. 

The uncertainty of tools/algorithms to forecast natural hazards and their impacts relies 
on the identification of uncertainty sources and their quantification throughout all the 
assessment steps. Uncertainty can take multiple forms, for instance, (i) epistemic, and 
(ii) aleatory uncertainties. Epistemic uncertainties are due to aspects (e.g. mechanism, 
processes, data) one could in principle know but which are not implemented in practice. 
This type of uncertainty could be lowered by improving assessment approaches, model 
structures, and/or including necessary data (e.g. initial conditions, boundary 
conditions, model parameters). Aleatory uncertainties manifest unknown system 
outcomes that can differ each time one runs an experiment under similar conditions, 
e.g. the temporal evolution of a hydrometeorological variable under the same driving 
forces. Aleatory uncertainties cannot be reduced a priori. 

It is assumed that forecasting systems will acceptably perform after a while (allowing 
improvements) when environmental conditions stay stationary. However, what 
happens if these environmental conditions start drifting significantly off normal (e.g. 
global change)? System uncertainty might alter, it may increase or decrease. 
Development of a forecasting system with an appropriate uncertainty for stationary 
conditions is already a challenging task, but making it robust as well, adds significant 
complexity to system design. For example, are model structures still valid, are model 
parameters sufficiently adapted to the changing environmental conditions? Another 
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type of robustness, which needs to be addressed in a multi-hazard setting, is whether 
the forecasting platform is able to acceptably predict coinciding weather-related natural 
hazards and cascading events or not. This type of robustness requires in particular an 
appropriate description of feedback processes. 

Performance (validation, verification, and evaluation) of ANYWHERE products is 
addressed at several places, i.e. deliverables (Annex I). The consortium decided to 
report these analyses as follows: 

• D1.4: synthesis of the overall outcome from the tools/algorithms (in terms of 
impacts) as embedded in the various A4* platforms; 

• D2.5: Uncertainty and Robustness (U&R) of the tools/algorithms in terms of 
forecasted natural hazards, mainly at the pan-European scale, but not 
exclusively. In cases there are no large scale applications, then U&R 
knowledge on more detailed scale is presented, if available. Moreover, in some 
cases, historic events (reforecasts) have been analysed.; 

• D3.4: U&R of the tools/algorithms in terms of forecasted natural hazards for 
the demonstration period in the Pilot Sites (October 2018 – September 2019); 

• D6.5: U&R of the tools/algorithms in terms of forecasted impacts for the 
demonstration period in the Pilot Sites. 

In the ANYWHERE project, the Uncertainty and Robustness (U&R) assessments are to 
be based on using existing probabilistic procedures, including forecast 
tools/algorithms. Deliverable D2.2 reported about the first findings on uncertainty and 
robustness within ANYWHERE (Ballesteros Cánovas et al., 2017). One of the main 
findings is that knowledge on U&R is very diverse among the tools/algorithms. Some 
algorithms/tools (e.g. weather and hydrological forecasting, flood forecasting) have 
well-established procedures to investigate and report on uncertainty, whereas others 
(e.g. pan-European storm surges, heatwaves and health, droughts) were more in an 
experimental phase. None of the tools/algorithms investigated coinciding natural 
hazards, and cascading effects of multiple hazards. 

The D2.2 report showed that still clear gaps in knowledge on U&R exist. ANYWHERE 
would benefit from improved knowledge. It was decided to extend WP2 Advanced 
forecasting models and tools to anticipate Weather and Climate (W&C) event induced 
impacts, in particular how the tools/algorithms for weather forecasting and nowcasting, 
hydrological forecasting, as well as forecasting of natural hazards will perform during 
the demonstration period in the Pilot Sites. U&R of tools/algorithms will be mapped in 
(qualitative) terms for, as far as possible, dominant pan-European physiographic 
settings. The U&R of the tools/algorithms will mainly be validated by comparing 
forecasted natural hazards with observed hazards (e.g. including reforecasts, 
validation runs, sensitivity analysis). Past events will be identified to investigate 
impacts of coinciding and cascading effects of multi-hazards. Parallel to investigating 
historic and ongoing conditions, hazards under a future climate will be explored to test 
robustness. 
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When investigating U&R, the various components of the ANYWHERE forecasting 
platform should be considered (Fig. 1). There is uncertainty in the weather forecasting 
❶, and in the downscaling ❷ to obtain a higher spatial resolution. Hence, weather 
forecast products ❸ are presented in a probabilistic way to account for some of the 
uncertainty. The probabilistic weather forecasts and nowcast products are input to the 
tools/algorithms ❺ that forecast the various single natural hazards ❻. For some 
hazards (floods and droughts) a hydrological model driven by the weather forecasts 
has to be run first to obtain probabilistic hydrological forecasts before the hazard 
tools/algorithms can be applied. The forecasted single hazards can be combined and 
jointly be presented to face and cope with compound natural hazards that either are 
coinciding or cascading. Most of D2.5 focuses on U&R aspects of the forecasting of 
natural hazards (Steps ❶ to ❻). 

 
Figure 1: ANYWHERE multi-hazard forecasting platform: products and 
tools/algorithms to forecast and nowcast weather-induced natural hazards and 
associated impacts. 
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The original idea for D2.5 was to search for commonalities among algorithms/tools to 
develop a common methodology to assess U&R aspects. This was assumed to cover 
all algorithms/tools, or at least those that translate hydrometeorological forecasts into 
natural hazards ❺. This would provide the basis for improvement of the 
algorithms/tools, if time would permit, or otherwise it would provide recommendations 
for improvement. It appeared during the U&R analysis of the natural hazards that a 
common methodology could not be developed. Reasons for this were among others: 
(i) the different concepts to forecast natural hazards, (ii) the data requirements (historic 
period, spatial coverage, type of data), (iii) state of development of algorithms/tools. 
However, it came out that there was similarity in plans for the uncertainty assessment 
for all hazards, that is, comparing forecasts with observations, or a proxy for 
observations, using re-analysis data or simulation. Hence, it was decided to present 
the current state of knowledge on U&R per algorithm/tool and to make a distinction 
between algorithms/tools dealing with: (i) weather forecasts and nowcasts, and 
hydrological forecasts, i.e. the hydrometeorological forecasts, and (ii) natural hazard 
forecasts. We started the report with the uncertainty in platforms/algorithms/tools 
forecasting hydrometeorological forecasts (Chapter 2), which is followed by the 
algorithms/tools that forecast natural hazards (Chapter 3). The chapters on uncertainty 
are followed by robustness of the algorithms/tools that forecast the natural hazards 
under a future climate (Chapter 4) and compound hazards (Chapter 5). Chapters 3-5 
conclude with a table summarizing per hazard: (i) which forecast products have been 
assessed, (ii) which data have been used, (iii) whether these were observed, proxy or 
simulated data, (iv) what were the length of time series data, and (v) which comparison 
method has been applied.  

As mentioned above, knowledge on U&R (Ch. 2-5) varies per forecasting platform/ 
algorithm/tool. Therefore, we present U&R in this report as follows: 

• Hydrometeorological forecast platforms: most knowledge was already 
available before the start of ANYWHERE and likely had to be updated as part of 
operational routine. Updating is a continuous activity of hydrometeorological 
organizations. Assessment of uncertainty is beyond ANYWHERE activities. The 
current state of uncertainty is briefly described with emphasis on references to 
literature. Robustness under a future climate (Chapter 4) is not dealt with 
because running the platforms under such new climate was not feasible within 
ANYWHERE. Forecasting of compound weather events is an inherent part of 
such platforms and not further described. Though, associated compound 
natural hazards are explained (Chapter 5); 

• Natural hazard algorithms/tools: (i) U&R already reported in D2.2; only 
conclusions are repeated in D2.5 with reference to D2.2, (ii) U&R obtained 
during the lifetime of ANYWHERE and published in open access papers; only 
synthesis is presented in D2.5 with reference to the paper, and (iii) U&R 
obtained during the lifetime of ANYWHERE and not reported yet; a more 
comprehensive description is given in D2.5. 
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As a response to the last review 2 , D2.5 continues with a description of the 
operationalizability of the forecasting algorithms/tools. Operationalizability is linked to 
experience with using the algorithms/tools, incl. a performance assessment 
(Chapter 6). The chapter addresses: (i) development stage, (ii) what purpose the 
algorithms/tools have been used for, (iii) data/resources required to apply at different 
scales, and (iv) deviation of final algorithm/tool relative to originally promised. The 
deliverable report concludes with how to move from hazard to impact forecasting at 
large scale beyond the level of the Pilot Site level (Chapter 7). Pan-European maps 
with exposure and vulnerability information are presented, which commonly are used 
to translate hazards into impacts. Some approaches to arrive at large-scale impact 
forecasting are described, which are supported by examples. The Deliverable D2.5 
was originally due in M36 (May 2019). To explain how to translate forecasted hazards 
into associated impacts at the pan-European scale (Fig. 1,Steps ❼to ❿), the delivery 
date was postponed to include information on large-scale exposure and vulnerability, 
impact forecasting, as well as information on operationalizability. This is a follow-up of 
the description of impact forecasting by Ciavola et al. (2017).  

ANYWHERE nowcast and forecast platforms and the algorithms/tools that forecast and 
nowcast weather-related natural hazards with their lead time ranges are given in 
Figure 2 to ease readability of the report. 

 

                                            
2 Result of the Review of H2020 project 700099 — ANYWHERE, Antonio Fernandez-Ranada Shaw, 
Project Officer, European Commission, Research Executive Agency, Ref. Ares (2019)3316357 - 
21/05/2019. 
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Figure 2: ANYWHERE nowcast and forecast platforms (bottom) and the weather-related natural hazards with their lead time ranges 
(not at linear scale) and spatial coverage. 
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2 Uncertainty in hydrometeorological and forecast and 
nowcasts products 

This chapter describes uncertainty of using platforms/algorithms/tools that generate 
hydrometeorological forecast and nowcast products (Fig. 1, ❶ and ❷). The 
hydrometeorological and forecast and nowcasts are divided in weather forecasts and 
nowcasts (Section 2.1) and hydrological forecasts (Fig. 1, ❸ and ❹; Section 2.2). 
Details on the platforms/algorithms/tools and the associated products can be found in 
D2.3 (Ciavola et al., 2017) and D2.4 (Van Lanen et al., 2019). 

Uncertainty of platforms/algorithms/tools is also closely related with lead time. 
Generally, uncertainty is larger for larger lead times, e.g. several days before a possible 
event. This does not mean that such forecasts are useless, but, on the contrary, they 
offer the possibility for issuing a pre-alert. Based on such a pre-alert, the responsible 
bodies can check the operational readiness and closely monitor the possible event. In 
this line of thinking these pre-alerts may be an important step in a warning chain, 
beginning with a pre-alert and eventually ending in a mobilization of public safety 
organizations. 

2.1 Meteorological forecast and nowcasts products3 

The first part explains uncertainty of platforms/algorithms/tools that produce weather 
forecasts, which is followed by uncertainty of nowcasts algorithms/tools. The section 
concludes with an example that describes uncertainty in downscaling. 

2.1.1 ECMWF Integrated Forecasting System (ECMWF-IFS) 
The ECMWF integrated forecasting (IFS) is the name of the computer software that 
computes the global forecasts at ECMWF. It is a very complex system consisting of 
thousands of tasks in different codes. The system is undergoing constant changes and 
is released in new version in so called cycles. The current cycle of IFS is Cycle 46R1, 
which was released in 6 June 2019. Each release consists of several new features and 
upgrades, and they all contribute to the continuous evolution of the system. 

The skill and uncertainty of ECMWF’s probabilistic forecast is measured continuously 
as part of the routine. Each cycle is also compared with the previous and a benchmark 
                                            
3 There is no report on the uncertainty aspects of the radar-based precipitation nowcasting algorithm 
PhaSt (CIMA; Metta et al, 2009).  

The radar-based precipitation nowcasting RAVAKA (FMI) has not been included in this deliverable 
report. Since the beginning of 2018 there is an internal FMI project to renew its nowcasting methodology 
to the STEPs method. The research and implementation is ongoing and the estimated launch of the 
new version is by the end of 2019. Hence there has been no development nor improvements in the 
RAVAKE method, nor resources to study of its uncertainty. Uncertainty results of the newer version are 
not available yet. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5 Page 8  

 

to test the quality. The testing is done using a plethora of measures, and the cycles 
are compared with so called “score card”. Some cycle changes may have neutral or 
even negative effects on a particular score or region depending even though the overall 
changes are positive. 

Uncertainty is inherent in ensemble prediction system, since the whole idea of 
introducing ensembles is to estimate the forecast uncertainty by perturbing the initial 
conditions and the physical tendencies in the model. For a well-balanced ensemble, 
the spread in ensemble should be as large as the mean error for each lead time. The 
spread-error relationship is something that is being constantly monitored by ECMWF. 
The overall skill is assessed every year in a technical memo published by ECMWF 
(Haiden et al., 2018). Examples of measuring and presenting skill scores of ECMWF-
IFS are presented in Figure 3 and 4. Examples cover the temporal evolution of the skill 
of temperature and precipitation forecasts. For more reading on IFS evolution and 
documentation see: IFS cycles4. 

 
Figure 3: The plot shows for each month the range at which the 3-month mean 
(blue line) or 12-month mean (red line) centred on that month of the continuous 
ranked probability skill score of the 850hPa temperature ENS dropped below 
25%. This is a primary headline score for the ECMWF ENS. 

                                            
4 https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model. 
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Figure 4: The plot shows for each day the range at which the 365-day mean 
(centred on the day) of the 24-h precipitation forecast 1-SEEPS score dropped 
below a fixed threshold. The plot for extratropics shows a supplementary 
headline score for the ECMWF HRES. 

2.1.2 FMI Numerical Weather Prediction models (FMI-NWPs) 
The weather forecast products provided by FMI are mainly based on the synoptic scale 
HIRLAM (High Resolution Limited Area Model) and the mesoscale HARMONIE-
AROME model (Harmonie-Arome General description; Termonia et al., 2018). The 
forecasting product Precipitation Type (Section 3.6.3) utilizes also the synoptic scale 
GFS (Global Forecast System) and ECMWF (European Centre for Medium-Range 
Weather Forecasts). The GLAMEPS (Grand Limited Area Model Ensemble Prediction 
System) weather forecast products are based on HIRLAM and the MetCoOp 
(Meteorological Co-operation on Operational Numerical Weather Prediction) ensemble 
products on HARMONIE-AROME. The HIRLAM calculation domain covers Europe 
and HARMONIE-AROME Nordic countries (Fig. 5).  

The main sources of NWP model uncertainty is caused by: i) observations, ii) model 
and iii) nonlinearity and chaos (Olliaho 2014; Shutts and Pallares 2014). Constantly 
increasing computing capacity and development of NWP models are decreasing 
uncertainty, but models have their physical limitations. In the short range (short lead 
times), the NWP uncertainty is largely an initial value problem. The NWP model are 
always suffering from insufficient cover of high-quality observations. Nowadays NWP 
models utilize more and more satellite data, which offers a good cover but only have a 
tolerable quality. High-quality observations and sophisticated data assimilation are 
crucial to achieve accurate initial conditions in the data assimilation. Observations are 
used to correct errors in the short lead time forecasts using an analysis from the 
preceding period. HARMONIE-AROME utilizes 3-dimensional variational assimilation 
(3D-Var) and HIRLAM more sophistic 4D-VAR, which covers also the time dimension. 
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Figure 5: The calculation domains of FMI´s models (outer HIRLAM, inner 
HARMONIE-AROME). 

The other important uncertainty factor is the model structure itself. The uncertainty of 
the model is based on unresolved scales, theory, numerical calculations and bugs. The 
unresolved scales lead to need of parametrization schemes (Fig. 6), which always 
have some weaknesses. A higher resolution decreases the amount of needed 
parametrization. The closer the parametrizations go towards describing the 
phenomena in molecular level, the more the knowledge about the processes is lacking. 

The need to specify boundary condition increase uncertainties. The details of 
orography are easily increased with higher computing capacity and resolution, but the 
changing characters (e.g. soil moisture and water vapor flux) cause uncertainties. In 
addition mountainous terrain poses a challenge to NWP models, due to physical 
parametrization that is based on flat terrain. The high resolution HARMONIE-AROME 
is a model permitting non-hydrostatic convection, which makes it capable to forecast 
severe weather because of deep convection. Most summer time severe weather in 
Europe is related to deep convection. It´s also able to depict phenomenon, like 
downslope wind and mountain waves. 
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Figure 6: An example on how a lake parametrization schema (lake model Flake) 
decreases the uncertainty in the HARMONIE-AROME forecasting model. The 
observations are from 123 SYNOP stations, which are located nearby lake. 
Source: Ulf Andrae, SMHI. 

The chaotic nature of the atmosphere causes a lot of uncertainty. Uncertainty 
increases with lead time (Fig. 7) due to that small uncertainties grow to large errors in 
the unstable flow. Present understanding is that chaotic behavior limits accurate 
weather forecasts to approximately 14 days. In an effort to quantify the large inherent 
uncertainty remaining in numerical predictions, ensemble forecasts have been used to 
obtain useful results farther into the future than otherwise possible. 

 
Figure 7: An example how lead time increases gust forecast uncertainty 
expressed as RMSE (blue: HIRLAM and violet: HARMONIE-AROME). Forecast 
were compared with Finnish ground-based SYNOP observations. The 
verification period is 1st March-30th June 2019. 
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2.1.3 UPC-CRAHI algorithm for precipitation nowcasting 
Uncertainty aspects of the algorithm for precipitation nowcasting is reported under 
Flash Flood forecasting (Section 3.1.1). The nowcasting product drives the flash flood 
algorithm FF-EWS. Park et al. (2019) provide more details about the precipitation 
nowcasting algorithm that provides continental precipitation over Europe with high 
resolution (2 km, 15 min) based upon the operational production of the OPERA 
composites from the European weather radar networks. 

 

2.1.4 Downscaling precipitation mountainous regions (UNIGE/METEODAT) 
High precipitation events are particularly hazardous for mountainous catchments 
where runoff rapidly increases after strong precipitation events, leaving limited time for 
warning to first responders. A high-quality forecast of heavy precipitation with long 
enough lead times (2-5 days) and an adequate spatial resolution is crucial for decision 
makers and intervention bodies. However, global weather forecast models remain 
relatively coarse in resolution (Section 2.1.1 and 2.1.2) and higher resolution regional 
model forecasts have limited lead times. To assess forecast performance for an Alpine 
region, we estimated daily areal precipitation for three Alpine catchments based on in-
situ measurements and the past ECMWF IFS-HRES forecasts (Section 2.1.1) for lead 
times of 2 and 5 days for January 2010 to September 2018. We then evaluated the 
potential of a bias correction and downscaling method to remove biases and to 
increase skill. 

Method and Data 

We present a post-processing method to bias correct and downscale heavy 
precipitation forecasts with medium-term lead times. The Model Output Statistics 
(MOS) consists of a two-step approach. In a first step, we are combining a universal 
kriging of the daily precipitation data with an indicator kriging of the precipitation 
occurrence, with the aim to interpolate meteorological station data and forecast model 
output to a 2 km grid. In a second step, we apply a MOS following a quantile-quantile 
mapping approach to correct systematic model biases. We used a dataset daily 
precipitation time series from a dense network of 787 stations from MeteoSwiss and 
SYNOP reports from some regions. As predictor, we selected daily precipitation from 
ECMWF historical operational runs. Data are available at a base horizontal resolution 
of about 9 km up to 10 days in advance for 2010-2018. 

Main findings 

We found that the uncertainty of heavy precipitation forecasts with medium range lead 
times (2-5 days) is considerable (Fig. 8) and there are regional patterns of significant 
positive and negative biases (Schauwecker et al., 2019). This leads to false alarms, 
but also missed events.  
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Figure 8: Histograms of interpolated areal precipitation records for three Alpine 
catchments (Emme, Simme and Vispa) and a lead time of (above) 2 days and 
(below) 5 days for days with a forecast ≥20 mm.  

The maps provided in Figure 9 show the correction factors for 5-days lead time and 
intensities of 20 mm. A clear spatial pattern of positive correction factors emerges over 
Northern Switzerland (Jura, Plateau), especially in the winter half year (October – 
March). The here presented post-processing and downscaling method has the 
potential to remove biases, improve the mean average errors and lowering the false 
alarm rate as presented by global weather forecast models. The improvement is 
however limited for single events of heavy precipitation, in the case the model 
prediction was low. Our results indicated that despite of the limitations, bias-corrected 
forecasts with medium range lead times are essential for risk anticipation. Such a 
forecast might complement other forecast tools and helps improving the reliability of 
pre-alerts and alerts, which are an important basis for initiating monitoring activities 
and to timely reach operational readiness. 
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Figure 9: Correction factors (%) for Switzerland and for a lead time of 5 days and 
a precipitation intensity of 20 mm. 

2.2 EFAS Hydrological forecast product (ECMWF) 
In ANYWHERE probabilistic hydrological forecasts have been done with EFAS 
(European Flood Alert System. EFAS has during the last year gone through a major 
change as the domain was increased, the projection changed, the hydrological model 
was upgraded, and the parameters were recalibrated. These changes also affected 
ANYWHERE, since the switch to the new domain was done in January 2019 for all 
products that were reliant on EFAS, i.e. flood and drought forecast products. This is 
important to mention in this context, because it means that extra care must be taken 
when scrutinizing the uncertainty in the model system. 
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Figure 10: Hydrological skill of EFAS at the calibration locations. Colour coding 
denotes the quality of the KGE during calibration (left half of square) and 
validation (right half of the square). Dark green: KGE > 0.75; Green: KGE 0.5 – 
0.75, Light green: KGE 0.2 – 0.5; Orange: 0 – 0.2; Red: < 0. Note: the 
hydrological skill of the calibration will be available as separate layer. 

EFAS monitors the performance on a regular basis through two types of scores; 
qualitative assessment of the issued forecasts and a qualitative skill score assessment 
of the model performance. The qualitative assessment is relying on assessing whether 
issued flood warnings were hits or misses, and from there a contingency table can be 
calculated. However, this has not been carried out recently, and this assessment is 
currently not available. EFAS gathers feedback from the users after each sent formal 
notification, but the resulting data is not always reliable. 

The update of the system meant a rigorous recalibration of the domain over the period 
1991-2016. The main score used was the Kling-Gupta efficiency (KGE). The model 
performed well in most parts of the domain, except for Spain (Fig. 10). In many parts 
around the Mediterranean region there were no stations used in the calibration. The 
reason for the poor performance in Spain is mainly due to uncertainty in terms of 
reservoir management. It should be noted that a poor performance in the calibration 
does not necessarily translate into a poor performance of the hydrological forecasts. 
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Figure 11: EFAS headline score CRPS Skill score (CRPSS) over the entire 
period for all grid points which have a upstream area of >=2000 km2 as a function 
of lead time. The reference score is the forecast from the previous day, which is 
a very difficult forecast to beat. The dotted lines represent the 90th and 10 
percentiles respectively. 

The assessment of skill scores were done over the period 1 June 2018-31 July 2019, 
well over a year. The skill was computed using the continuous ranked probability skill 
score (CRPS, Annex III) and the bias in the forecast (Fig. 11). The proxy for 
observations were the simulations forced with observations. For more information on 
the scores used and strategy for verification, please see D2,2 (Ballesteros Cánovas et 
al., 2017). 

The performance shows a strong spatial variability, where the model performs 
generally better in the northern part of Europe than in the south. It can be noted that 
the Danube river is quite well forecasted (Fig. 12, right), although the areas contributing 
to the river does not show the same good skill (Fig. 12, left). 

 The skill also varies greatly over the year, which can be seen in Figure 13. The skill in 
winter is normally higher than in summer, because most rivers are at their lowest flow 
during that season. The variability is small, which makes it easier to predict. 
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Figure 12: Number of weeks before the CRPSS goes below 0.1 for all the points 
in Europe (left) and for all major river points (area >=2000km2). Blue colour 
indicates a good performance, and red colour indicates a less good performance. 

 
Figure 13: Monthly means of CRPSS for lead time 5 days for all the major river 
points in Europe over the test period against persistence forecast. The skill is 
largest during the winter months, when there is less variation in the flow in large 
parts of Europe, which gives a benefit to persistence as a reference forecast. 

Although EFAS originally was developed for flood forecasting (Section 3.1), it was also 
calibrated taken the water balance into account. It therefore works generally well also 
under conditions (e.g. low river flow). This is essential for drought forecasting 
(Section 3.5). 
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3 Uncertainty in weather-induced natural hazards products 

This chapter describes uncertainty of using algorithms/tools (Fig. 1, ❺) that translate 
hydrometeorological forecast and nowcast products (Fig. 1, ❸ and ❹) into natural 
hazard forecast products (Fig. 1, ❻). Successively, we describe uncertainty in using 
algorithms/tools on floods and landslides, storm surges, heatwaves and air quality, 
fires, droughts, and convective storms, severe winds and heavy snowfall. Details on 
the algorithms/tools and the associated products can be found in D2.3 (Ciavola et al., 
2017) and D2.4 (Van Lanen et al., 2019). 

As mentioned in Chapter 1, no common methodology could be applied to assess 
uncertainty of all algorithms/tools that forecast natural hazards. Hence, a table is given 
(Table 5, Section 3.7) that summarizes per hazard: (i) which forecast products have 
been assessed, (ii) which data have been used, (iii) whether these were observed, 
proxy or simulated data, (iv) what were the length of time series data, and (v) which 
comparison method has been applied. 

 

3.1 Floods, flash floods, landslides and debris flows5 

The first part explains uncertainty of algorithms/tools that produce flood forecasts, 
which is followed by uncertainty of algorithms/tools that generate forecasts on 
landslides and debris flows. 

 

3.1.1 FF-EWS flash flood hazard nowcasting algorithm (UPC) 
As described in D2.3, the FF-EWS module (Alfieri et al., 2011; 2017; Corral et al., 2009; 
2019; Park et al., 2019) produces flash flood hazard nowcasts using a simple traffic-
light index. Within the project, this algorithm has been applied over different domains 
and different resolutions. The pan-European FF-EWS flash flood hazard algorithm 
nowcasts flash flood hazard throughout Europe with a resolution of 1 km and 
15 minutes, and for lead times up to 6 hours. The algorithm uses the catchment-
aggregated rainfall (i.e. the rainfall integrated in the catchment upstream of each point 
of the drainage network and over its characteristic concentration time) as the main 
forcing leading to flash floods and compares the observations and nowcasts of this 
variable with reference values (thresholds) to estimate the flash flood hazard over the 
drainage network. The sources of uncertainty of the algorithm are related to the quality 
of the rainfall inputs (both observations and nowcasts), the values of the thresholds 
related to different flash flood hazard level, and the validity of the hypothesis that the 

                                            
5 There is no report on the uncertainty aspects of the Flood-PRObabilistic Operational Forecasting 
System, Flood-PROOFS (CIMA). However, Flood-PROOFS has been included in a comparison with 
the FF-EWS flash flood hazard nowcasting algorithm (Section 3.1.1.2). 
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flash flood hazard can be directly related to the hazard level of the catchment-
aggregated rainfall. 

The work presented here has focused on analyzing the flexibility of the FF-EWS 
algorithm (which enables its implementation in different domains, different resolutions 
and with different inputs) and its robustness performance anywhere in Europe. This is 
done by using existing regional or national real-time rainfall products (both from radar 
and gauge networks), increasing the resolution of the drainage network in the pilot site 
versions (default set is 1km at European scale) or use of existing regional IDF analyses 
to relate the rainfall amounts and the flash flood hazard (expressed in terms of the 
return period). 

The section has been divided into two subsections, analyzing these implementation 
efforts of the algorithm and the results from the following perspectives: 

• Its ability to assess the flash flood hazard at European scale based on the 
radar composites produced by the EUMETNET program OPERA (Saltikoff et 
al., 2019) and the radar-based nowcasts produced with the UPC-CRAHI 
algorithm for rainfall nowcasting. 

• Its ability to assess the flash flood hazard at regional scale in Liguria (Italy), in 
comparison with the forecasts obtained with the Flood-PROOFS system, 
based on the rainfall-runoff model Continuum. 

 

3.1.1.1 Flash flood hazard nowcasting at the European scale (UPC) 
During the demonstration of ANYWHERE, the European gauge-adjusted radar 
precipitation estimates based on OPERA radar composites and SYNOP observations 
have been made available in the different pilot sites of the project through the different 
configurations of the A4EU platform. Park et al. (2019) performed daily monitoring of 
these gauge-adjusted precipitation composites in year 2018 and showed that the 
quality of the input radar has also been improved compared with previous years (e.g. 
2015-2017, Fig. 14b). This is possibly due to changes made recently in data collection 
strategy among the OPERA community to which our feedback has clearly contributed 
(e.g. Saltikoff et al. 2019). Park et al. (2019) also showed the impact of of adjusting the 
OPERA rainfall amounts with rain gauges observations on the flash flood hazards 
estimates (Fig. 15). 
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(a)  

(b)  
Figure 14: (a) Daily monitoring of the ratio R/G (R: radar-OPERA, G: gauge) and 
Mean Absolute Error (MAE) before and after (blueish and reddish colours, 
respectively) the gauge adjustment from May to September 2018. (b) Similar as 
(a) but summarized for different years (figures extracted from Park et al, 2019). 

Additionally, in ANYWHERE, the effect of the density of the rain gauge network on the 
adjustment of the OPERA rainfall amounts has been further explored to cope with the 
uncertainties in the flash flood hazard nowcasting. This is done by adding real-time 
observations from denser gauge networks to the existing SYNOP network. The test 
has been made for Spain, where the SYNOP network is quite sparse, particularly in 
the southern regions. Figure 16 illustrates that the flash flood induced by heavy rainfall 
could be identified in San Javier (yellow level) after adding the available AEMET 
gauges in the gauge adjustment of the OPERA radar rainfall estimates used in the FF-
EWS. 
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Figure 15: Example of the impact of gauge adjustment on the flash flood hazard 
assessment. (a) the areas affected in Europe from 29 May to 3 June 2016. The 
OPERA coverage is outlined in red. (b) OPERA rain accumulations. (c) gauge-
adjusted OPERA rain accumulation. A summary of the ERICHA flash flood 
hazard level (i.e., the maximum level extracted during the periods) obtained with 
(d) the OPERA accumulation inputs and (e) the gauge-adjusted OPERA rain 
accumulation. (f) The damage report points from ESWD plotted over the zoomed 
areas (blue box) of e. 
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Figure 16: Gauge-adjustment can be by combining SYNOP and existing dense 
gauge network; e.g. with AEMET over Spain. 

To extend the coverage of the European radar products used in ANYWHERE, the 
OPERA composite has been extended with the Italian composites (Fig. 17a), which 
also enables extended hazard identification over larger areas in Europe (e.g. see 
Fig. 17b). 
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Figure 17: (a) Daily rainfall accumulation for 21 Oct 2019 estimated after 
combining the OPERA composites with the Italian national composites. 
Significant flooding occurred near Rossiglione( located inside the black box and 
shown in twitter at around 1800 LT) and Castelletto d’Orba (e.g. La Republica) 
(b) The real-time flood hazard level (low, medium, high) nowcasting done in the 
black box areas with lead time 1, 2 and 3 hours.  
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During the demonstration phase of the project, the analysis has also focused on 
assessing the quality of the flash flood nowcasts as a function of lead time. Figures 18 
and 19 show the results for two recent events. 

 
Figure 18: Comparison of the flash flood hazard nowcasts for the event of 22 
October 2019 at 19:15 UTC on the coast of Tarragona (NE Spain) based on 
observations (top), the 1-h rainfall nowcasts (middle) and the 2-h rainfall 
nowcasts (bottom). 

leadtime: 1h

leadtime: 2h

leadtime: 0h
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Figure 19: Comparison of the flash flood hazard nowcasts for the event of 01 
December 2019 at 19:30 UTC on the French Mediterranean coast based on 
observations (top), the 1-h rainfall nowcasts (middle) and the 2-h rainfall 
nowcasts (bottom). 

Overall, the conclusions from these analyses are: (i) The 1-h flash flood hazard 
nowcasts are very good; (ii) The limit of predictability of the flash flood hazard 
nowcasting algorithm is between 2-3 hours, especially for events with fast-evolving 
convective rainfalls. Forecasting of impacts caused by flash floods using FF-EWS is 
presented in Section 7.3. 
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3.1.1.2 Comparison of the FF-EWS algorithm with the simulations of a runoff-based 
hazard assessment algorithm 

This part of the study is limited to evaluating the performance of the FF-EWS algorithm 
form the point of view of flash flood hazard assessment (the nowcasting component 
was turned off) by comparison with the hazard estimated with the Flood-PROOFS 
system, the flash flood hazard module running operationally for flash flood forecasting 
at the Regional Environmental Protection Agency of Liguria (ARPAL). 

 
Figure 20: (a, b) Maximum return periods in the drainage network in Liguria (NW 
Italy), obtained by the FF-EWS system and Flood-PROOFS, respectively, for the 
event of 09-10 October 2014. (c) Evolution of the return periods estimated form 
observations at a section of the Bisagno Creek in Genova (in black), and 
simulated with FF-EWS and Flood-PROOFS (blue and red lines, respectively). 
From Corral et al., 2019. 

The main difference between the two systems is that the FF-EWS algorithm assesses 
the flash flood hazard based on the rainfall accumulated on the catchment upstream 
each point of the drainage network (the basin-aggregated rainfall), whereas Flood-
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PROOFS uses a full rainfall-runoff model to assess the hazard based on the simulated 
discharge. 

Compared to the pan-European version of FF-EWS, the application of FF-EWS at 
regional scale enables a refined estimation of the flash flood hazard in to two aspects: 
(i) increasing the resolution of the drainage network, and (ii) assessing the flash flood 
hazard in terms of return period, using the regional Intensity-Duration-Frequency study 
available in Liguria. 

FF-EWS and Flood-PROOFS have been run with the same rainfall inputs and over the 
same drainage network for the most significant rainfall events that affected Liguria in 
autumn 2014. This enabled a systematic comparison between the two systems, aiming 
at evaluating the effect of the underlying sources of uncertainty in the results obtained 
with the two systems. The results of the comparison have been recently published 
(Corral et al., 2019), and a brief summary is presented here. 

The analysis is presented in terms of the estimated hazard (expressed in terms of the 
estimated return period), showing remarkable similarities between the two systems in 
the hazard estimates, especially for return periods larger than 10 years, such as the 
flooding of the Bisagno Creek in Genova on 9 October 2014 (Fig. 20). Flood-PROOFS 
tended to provide slightly higher return periods than FF-EWS, likely because the 
catchments were relatively wet before the studied events. Also, this comparison shows 
better agreement between the two systems in the larger catchments (over 50 km2). 

Also, the evolution and magnitude of the hazard estimates of both systems 
corresponded very well to the return periods estimated from measured discharges, 
impeding a conclusion on which of the two systems performed better. Based on these 
results, the authors recommend to opt for the discharge-based system (Flood-
PROOFS) in regions where the rainfall-runoff model can be calibrated well and 
computational requirements are not a major concern. In regions where these 
conditions are not met (which is often the case), the FF-EWS system can be a good 
choice, since it has been shown to be capable of providing hazard estimates of similar 
quality. 

 

3.1.2 Landslides and debris flows hazard and impact assessment (UPC) 
The algorithm of Berenguer et al., 2015 (see also Palau et al., 2020) identifies the 
areas prone to landslides and debris flows triggered by heavy rainfall and is adapted 
to real-time performance. The algorithm uses radar-based rainfall estimates and 
nowcasts (Section 2.1.3) and outputs a map of a qualitative warning level that can be 
used so support landslide risk management. 

The algorithm has been applied at regional scale in the pilot site of Catalonia (Spain), 
and the results obtained for a period of seven months have been presented by Palau 
et al. (2020). In this section, the main findings on performance of the system and its 
uncertainties are summarized. 
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The landslides warning level is computed combining (i) the susceptibility map of the 
study area, and (ii) gridded rainfall observations and nowcasts. For Catalonia, the 
susceptibility has been obtained combining the maps of slope of the terrain and land 
cover using fuzzy logic; and the global probabilistic rainfall thresholds by Guzzetti et 
al. (2008) have been adopted to define four qualitative rainfall hazard levels. The 
combination of these two variables is done using a 2-D warning level matrix classifying 
the warning level into 4 classes (“very low”, “low”, “moderate” and “high”). 

 
Figure 21: Warning level estimated in Catalonia for the situation of 21 July 2010 
at 19:30 UTC. (a) and (b) display the results presented over a 30-m grid, and 
over a subbasin division. Green, yellow, orange and red represent warning levels 
“very low”, “low”, “moderate” and “high”, respectively. (c) Warning level around 
the Rebaixader subbasin with a resolution of 30 m. In this subbasin, a debris 
flood was reported around this time; the pixels achieving higher warning level 
represent the possible landslide initiation zones.  

The performance of the algorithm shows that landslide warnings were generally 
located at susceptible areas coinciding with the most significant rainfall events. Over 
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the studied period of seven months, the area where more than six days with “moderate” 
or “high” warning level is issued is rather small. However, in many of the locations with 
“moderate” or “high” warnings, no landslide event was reported (Fig. 21). It needs to 
be noted, though, that, in Catalonia landslides are typically unreported if no 
infrastructures, buildings or roads are affected, which makes the validation of the 
results challenging. 

 
Figure 22: Time series of the warning level issued with the algorithm for two of 
the landslide events detected at the Rebaixader monitoring site. The black line 
represents the 30 min rainfall intensities estimated with weather radar in the 
subbasin: (a) 11 July 2010 and (b) 21 July 2010 landslides. The colour bars 
represent the maximum warning level observed within the catchment. Green, 
yellow, orange and red represent warning levels “very low”, “low”, “moderate” 
and “high” respectively. For each event, the red dashed line indicates the time 
when de monitoring station detected the landslide event. 

Consequently, systematic validation has only been possible in two monitored 
subbasins (description of the monitoring systems present in these two sites can be 
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found in Palau et al., 2020; Raïmat et al., 2013; Hürlimann et al. 2014). In these two 
subbasins, the algorithm has been able to issue a “moderate” or “high” warning level 
coinciding with the time that four debris flow events were recorded at the two sites (an 
example is shown in (Fig. 22). However, in these catchments the results also show 
some false alarms (2 days where the monitoring systems did not detect significant 
landslides or debris flows). 

Additionally, the analysis of the results has also studied the ability of the algorithm to 
identify three landslide events that affected infrastructures in two different locations. 

As part of the study, Palau et al. (2020) have analyzed the sensitivity of the results on 
the mapping unit used: the algorithm has been run using two types of mapping units: 
subbasins (the domain was divided into subbasins using the Strahler stream order), 
and square pixels (configurations with pixels of 30 m and 200 m have been tested). 
The results obtained are similar for the tested configurations, and in general, all are 
able to issue warnings for the most significant reported landslide events. However, the 
high-resolution configurations tend to issue significant warning levels more often than 
the low-resolution configurations, which results in two false alarms for the former and 
one missed event for the latter. 

All the parts of the algorithm are affected by uncertainties that can have an effect on 
its performance; namely, the susceptibility classification (both the variables and the 
rules used in the classification), the input rainfall observations and nowcasts, the 
rainfall thresholds and the definition of the rainfall hazard levels, and the thresholds 
used in the classification of the warning levels. Moreover, uncertainties also arise in 
the evaluation of the warnings at the locations where no landslide reports are available, 
or in locations where landslide reports are available, but the time of the event is not 
well known. 

Finally, Palau et al. (2020) also discuss possible improvements of the algorithm to 
enhance its performance (e.g., considering the sediment availability or accounting for 
the antecedent soil moisture conditions). 

 

3.2 Storm surges 
First uncertainty aspects of using the Storm Surge Model at the pan-European scale 
are described followed by the model at the regional scale. The section concludes with 
the Inundation and Erosion Model. 

3.2.1 European Storm Surge model (ESS) (CFR) 
A pan-European Storm Surge Forecasting System (European Storm Surge model, 
ESS) has been implemented and validated during the ANYWHERE Project. It includes a 
coupled storm surge, tidal and wave model on an unstructured grid for Europe. The 
skills to predict tidal, surge and total water levels were evaluated based on 
measurements from 208 tidal gauge stations. The storm surge forecast system 
showed satisfactory performance for the two ECMWF atmospheric forcing datasets 
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tested: a High Resolution Forecast and the ERA-INTERIM reanalysis. For tidal 
predictions, the total Root Sum of Squares (RSS) is equal to 0.198 m. Thus, the 
predictive skills of the model outperforms the global tidal model FES2004 
(RSS=0.423), but it is overtaken by the performance of the FES2012 (RSS = 0.148 m), 
which is however a data assimilation-based product. Storm surge validation results 
show good predictive skill, with RMSE between 0.04 and  0.21 m, and %RMSE within 
4%–22% (Fig. 23). Coupling with tides resulted in improved storm surge level 
predictions, with RMSE reducing to 0.033 m. The North Sea and the English Channel 
areas benefited the most from coupling storm surge and tidal predictions, resulting in 
up to 2% reduction of the %RMSE. Increasing the resolution of atmospheric forcing 
also improved the predictive skills, leading to a reduction of RMSE up to 0.06 m in 
terms of extremes, especially in shallow areas where the wind is the main driver for 
surge production. We propose as optimal setup for operational pan-European storm 
surge forecasting the combination of tidal levels from the FES2012 model and storm 
surge residuals from the ESS setup which couples meteorological and astronomic 
tides. (Fernández-Montblanc et al., 2019). 

 
Figure 23: Validation of non-tidal residual (ηRE) results at the tidal gauge 
stations considered used for the coupled tidal and storm surge simulation (E2). 
(a,c) Map scatter plots of RMSE, %RMSE respectively; (b,d) RMSE and %RMSE 
histograms for all tidal gauges with the vertical axis showing the count and the 
text labels above the bars the percentage of all tidal gauges belonging to the 
specific bin. (Fernández-Montblanc et al., 2019) 
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In order to expand the testing of the storm surge model uncertainty a hindcast of Storm 
Surge Levels (SSL) for the period 1979-2018 was produced (ANYEU-SSL). The 
dataset covered 40 years (1979-2018) of SSL data along the European coastline with 
3-hour temporal resolution. It has been extensively validated for the period spanning 
from 1992 to 2016, considering the whole time series, and extreme SSL values. 
Validation against tidal gauge data showed an average RMSE of 0.10 m, and RMSE 
below 0.12 m in 75% of the tidal gauges. Comparisons with satellite altimetry data 
(Fig. 24) showed an average RMSE of 0.07 m. 

 
Figure 24: Hindcast validation against satellite altimetry data. (a, c, e). Map 
scatter plots of RMSE, %RMSE and correlation coefficient (r), respectively; warm 
colours indicate higher performance; (b, d, f) RMSE, %RMSE and r histograms 
for all validation cells with the vertical axis showing the count and the text labels 
above the bars the percentage of all validation cells (1°x1°) belonging to the 
specific bin. (Fernández-Montblanc et al., in press) 
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As a potential application of the hindcast dataset, the storm surge trends that might 
have occurred in last decades along European coastline, were evaluated. The results 
showed a trend in extreme storm surge magnitude that was controlled by latitude for 
the period 1979-2016. SSLs appeared to increase in areas at latitudes, exceeding 50 
°N, while there was a decrease at low latitudes. Additionally, a seasonal variation of 
the extreme SSL, particularly strong in the northern areas, has been observed. The 
dataset is publicly available and aims to provide an important data source for the study 
of storm surge phenomena and consequential impacts, either at the large or local 
scales. (Fernández-Montblanc et al, in press). 

 
Figure 25: Modelled significant wave height versus satellite altimetry data. (a, c, 
e) Map scatter plots of RMSE, %RMSE and r, respectively; warm colours 
indicate higher performance; (b, d, f) RMSE, %RMSE and r histograms for all 
validation cells with the vertical axis showing the count and the text labels above 
the bars the percentage of all validation cells (1°x1°) belonging in the specific 
bin. 
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The model ability to reproduce significant wave height (SWH) was evaluated by 
comparison with measurements from 224 wave buoys measurements and satellite 
measurements for the period 2011 to 2013, using ERA INTERIM, ERA5 reanalysis and 
high resolution forecast as atmospheric forcing. Skill scores were calculated as a 
measurement of the model uncertainty to reproduce SWH. The RMSE of SWH was 
lower than 0.5 for more than 50% of the buoys. The comparison with satellite 
measurement of SWH showed RMSE around 0.4-0.5 m in most of the validation 
locations and relative RMSE (%RMSE) below 10% (Fig. 25). The effect of coupling 
waves, tide and surge was also investigated. Results indicated an improvement of both 
storm surge level and significant wave height predictions. This improvement was more 
evident for the storm surge level. When waves were included, the underestimation of 
extreme SSLs, previously highlighted, was consistently reduced. 

In order to reduce the model’s uncertainty, it was assessed if the model’s shortcomings 
were related to the atmospheric forcing resolution/accuracy. The results revealed that 
scatterometer wind data from satellite measurement can be used for statistical 
corrections of the wind forcing used in the model. Model experiments has 
demonstrated that the quantile mapping technique for bias correction improved the 
SSL (up to RMSE reduction of 0.08 m) and SWH (up to RMSE reduction of 0.3 m) 
predictions, considering the extremes events of surge and waves and in semi-enclosed 
areas (Baltic and Mediterranean Sea). On the other hand, the contribution by the 
expansion of the water volume (steric effect) to extreme water levels has been 
analyzed using altimetry data from satellite measurements. Results have shown that 
the steric effect could account for around 40% of the non-tidal residual in the 
Mediterranean and the Black Sea, and 25% in the Baltic Sea. This highlights the 
importance to incorporate this specific physical process into the algorithms through 
numerical modeling or data assimilation.  

 

3.2.2 Regional Storm Surge model (CFR) 
The total water levels outputs provided by the storm surge regional model has been 
validated on the basis of historic events. Extreme events, with water level exceeding 
the 5 years return period were selected from the time series of the water level 
measured at the Stavanger tidal gauge. The model’s performance to reproduce the 
total water level was satisfactory. The absolute errors of the maximum total water levels 
during the selected extreme events ranged between 0.05 and 0.1 m. The results 
highlighted an underestimation of maximum water level. The larger uncertainty was 
linked to the tidal component of the total water level.  

 

3.2.3 Inundation and erosion model (CFR) 
The inundation model for the Stavanger municipality was validated using the historic 
event occurred on 8 December 1994. As direct inundation measurements were not 
available, the predicted inundation extent and water level were compared with visual 
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estimation of the flood depth. Thus, the documentation of the flooding event (pictures 
and videos) available online was visually analyzed and compared with model’s outputs. 
The inundation level at the base of the first line of buildings in the city center was 
estimated in the order of ~0.15-0.2 m. The simulated flood depth at that location was 
on average 0.19 with a standard deviation of 0.03. Along the promenade, flood depths 
were estimated as ~0.2-0.25 m, while the simulated ones were on average0.23 m with 
a standard deviation of 0.03 m (Duo et al., in press). 

 

3.3 Heatwaves and air quality (weather-induced health) 
Uncertainty of using algorithms/tools to forecast heatwaves and air quality products is 
explained. These products are associated with weather-related health. 

 

3.3.1 Universal Thermal Climate Index (UTCI) (UOR) 
The uncertainty of UTCI forecasts is due to the uncertainty of ECMWF inputs 
variables– namely 10 metre wind speed, 2 metre relative humidity, 2 metre 
temperature, and solar radiation (Section 2.1.1) – used for the computation of UTCI 
forecasts. It has been assessed and described in Deliverable D2.2 (Ballesteros 
Cánovas et al., 2017) on the basis of the work by Pappenberger et al. (2015) and here 
is briefly reported. Using reanalysis climate data (1979-2009) at the global scale the 
UTCI was been shown sensitive to all input variable with: (i) some linear dependencies 
on air temperature, (ii) a distinct lower boundary for wind (> 17 m/s) justified by the 
clothing insulation and vapour resistance caused by body movements and the wind 
itself (Havenith, et al., 2012), and (iii) a lower boundary influenced by the solar 
elevation angle, solar radiation and thermal radiation (Fig. 26). 
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Figure 26: Scatterplots of meteorological inputs against UTCI to illustrate 
associated dependencies (Pappenberger, et al., 2015). 

Similarity between forecast and observed UTCI was also analysed. UTCI forecasts 
were calculated every day with a lead time of 10 days from 1 January 2009 to 31 
December 2012 using both the ECMWF HRES and ENS inputs. The deterministic 
high-resolution, control and ensemble mean forecasts of the UTCI were then 
compared with observation using the Anomaly Correlation Coefficient (ACC). 
Pappenberger et al. (2015) found that the maximum lead time for which ACC stays 
above 60% is 4-6 days in the Mediterranean Basin (30°N–48°N, 10°W–40°E) and 4-6 
days for the ensemble mean forecast in Northern Europe (48°N–75°N, 10°W–40°E). 
For the latter the deterministic high resolution and control forecast have ACC above 
60% for less days, namely 2-4 days (Figure 27). 
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Figure 27: Anomaly correlation for the Northern European area and the three 
different UTCI forecasts. The circle illustrates the mean whilst the box indicates 
the 25th and 75th percentile. The whiskers of the box plot extend to the 95th and 
5th percentile. Coloured circles indicate outliers. (Pappenberger, et al., 2015). 

The skill of UTCI forecasts in the prediction of strong heat stress (>32°C) was assessed 
via the Brier Skill Score (BSS). The lead time at which the BBS drops below zero, i.e. 
there is no skill compared to climatology, is highest for ensemble predictions rather 
than the control and the high-resolution forecasts (Pappenberger, et al., 2015). 

Studies have also been conducted to assess the UTCI capability to represent thermal 
perception and associated uncertainty. By definition, the UTCI is universal (Błażejczyk 
et al., 2013). It has therefore been evaluated across different climate regions (artic, 
moderate, dry and wet subtropical), as well as on spatial and temporal scales from the 
micro through to the macro (Coccolo et al., 2016). For instance, Park et al. (2014) 
compared the thermal perception as expressed by the UTCI with the thermal 
perception as represented by other thermal indices (as PET, PMV and SET*). Using 
two different locations – Nanaimo, BC, Canada and Changwon, Republic of Korea – 
as test areas they demonstrated a large correlation factor exists (R² = 0.95). 

Another correlation that has been tested for the UTCI is the one with health impacts, 
namely heat-related mortality. Di Napoli et al. (2018), for instance, showed that the 
strength of the UTCI-mortality correlation depends on bioclimatic conditions. This has 
been proved both at country (17 different European nations) and city (Paris) level. This 
correlation is of a particular importance as it is related to the usefulness of the UTCI 
and UTCI forecasts to predict heat-related mortality. Future, quantitative assessment 
of the UTCI uncertainty with respect to health impacts will help to shed new lights on 
this. 
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3.3.2 Regional Air Quality (RAQ) (UOR) 
The uncertainty of RAQ forecasts is inheritably due to the uncertainty of the prediction 
system they are based upon, namely the ECMWF-IFS (Section 2.1.1) coupled to a 
seven chemical transport models (see Deliverable 2.3 for further details, Ciavola et al., 
2017). The uncertainty of RAQ forecasts has been evaluated against the near-real time 
air quality (NRT AQ) surface monitoring data as described by Marécal et al. (2015). By 
considering two high ozone episodes occurred in Europe between 10 and 13 June 
2014 as an example, the authors found: (i) a good consistency of the diurnal ozone 
variations provided by the seven models compared to the NRT AQ station observations 
from affected areas (Austria, Hungary, Germany and France), and (ii) ozone values 
from the ensemble mean close to observed ones with the largest deviations due to 
orography (Fig. 28). 

 
Figure 28: Left panels: ozone measurements from surface stations from 10 June 
2014 at 00:00 UTC to 14 June 2014 at 00:00 UTC, located in 6 areas affected 
by the high ozone episode (Austria, Hungary, Germany, France). Right panels: 
EPSgrams giving median, 90th percentile, 75th percentile, 25th percentile, 10th 
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percentile, minimum and maximum from 3 h outputs of the 96 h forecasts of the 
seven models from 10 June 2014 at 00:00UTC to 14 June 2014 at 00:00 UTC. 
Model outputs are interpolated at the location of the stations shown in the left 
panel (Marécal et al., 2015). 

 
Figure 29: Statistical indicators for ozone as a function of the forecast time (in 
hours) for the ensemble median (in turquoise) and the seven models (other 
colours) compared to the hourly surface station measurements available for the 
period from 9 to 15 June 2014 over the MACC-II European domain. (a) MB (in 
μg m-3), (b) MNMB, (c) RMSE (in μg m-3), (d) FGE and (e) correlation (Marécal 
et al., 2015). 

For further evaluation, four statistical indicators - mean bias (MB), modified normalised 
mean bias (MNMB), the root mean square error (RMSE), fractional gross error (FGE) 
and correlation coefficient (R) - of ozone concentration forecasts from the seven 
individual models and the ensemble model (ENSEMBLE) were calculated using 
representative observations available over the whole European domain and 
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consecutive 96 h forecasts run every day from 9 to 15 June. Figure 29 shows that there 
is a spread of the seven models and that the ENSEMBLE generally gives the best 
scores with MNMB between 0.2 and -0.1, FGE between 0.15 and 0.4 and correlations 
up to 0.75 during daytime. 

 
Figure 30: Statistical indicators for ozone as a function of the forecast time (in 
hours) for the seven models and the ENSEMBLE compared to the hourly surface 
station measurements available for the period from 1 June at 00:00 UTC to 1 
September at 00:00 UTC over the MACC-II European domain for 2014: (a) MB 
(in μg m-3), (b) MNMB, (c) RMSE (in μg m-3), (d) FGE and (e) correlation (Marécal 
et al., 2015). 

All the models, including the ENSEMBLE, exhibit a diurnal cycle with higher 
correlations and lower RMSE and FGE during daytime (when ozone is high) than 
during night-time. Five of the models have a positive MB on average and the other two 
a negative MB on average. This confirms that the ENSEMBLE, which uses all seven 
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models, performs generally better on all statistical indicators. For this reason, the 
output of the ENSEMBLE, i.e. the ensemble forecast median of ozone and other 
pollutants’ concentrations (namely nitrogen dioxide, sulphur dioxide, carbon monoxide, 
particulate matters), has been chosen for connection to the ANYWHERE platform. 

In addition to the production of the daily skill scores just described, statistical indicators 
were calculated for ozone, NO2 and PM10 at the surface on a seasonal basis for each 
of the seven models and for the ENSEMBLE. The model’s seasonal statistical 
indicators are also calculated against measurements from the European air quality 
surface station network available in near-real time. 

 

3.4 Weather-induced fires6 
The uncertainty aspects of the European Fire Forecasting System and Global ECMWF 
Fire Forecasting model (EFFIS-GEFF) is explained. 

As mentioned in detail in D2.2 (Ballesteros Cánovas et al., 2017), forecasting wildfires 
is a complex task because ignition location and time of occurrence cannot be easily 
predicted, especially when the trigger is due to human behavior (e.g. arson). Therefore, 
forecasting wildfires means quantifying how dangerous fires could be assuming an 
ignition occurred and knowing weather conditions from advanced numerical weather 
models. The European Centre for Medium-range Weather Forecasts (ECMWF) 
developed and now maintains the modelling engine that works as back-end of the 
European Forest Fire Information System: the Global ECMWF Fire Forecast (GEFF) 
model. EFFIS-GEFF is designed to identify fire-favorable weather conditions which can 
allow sustained fire activity.  

The system generates two types of data products: a global reanalysis dataset and daily 
real-time forecasts up to 10 days ahead. Two types of forecasts are generated: a 9 km 
deterministic forecast (also called high resolution forecast or HRES) and an 18 km 
probabilistic forecast (comprising of 51 ensemble members, also called ENS). A 
detailed description of the reanalysis dataset (based on ERA-Interim), definition of 
danger levels at country and regional levels and their validation, were already 
discussed in D2.2 (Ballesteros Cánovas et al., 2017) and have been recently published 
(Vitolo et al. 2018; 2019a). 

Here we focus on the forecast products and their assessment. The forecasting system 
is described in Di Giuseppe et al. (2016). As the system, developed for the Copernicus 
Emergency Management Service at ECMWF, has undergone substantial 
improvements, a new validation at global scale is currently in progress (Di Giuseppe 
et al., 2019). As results are not published yet, we provide below a description of the 

                                            
6 There is no report on the uncertainty aspects of RISICO - fire danger rating system (CIMA) and 
PROPAGATOR - propagation of a wildfire (CIMA). 
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methodology currently used to validate wildfire danger forecast products at various 
scales, from continental to local level. 

Each dataset contains numerous fire danger indices, however, the most widely used 
in Europe is the Fire Weather Index, which is also used herein to assess the 
performance of the fire danger forecasting system. Below, we predict the FWI values 
and the probability of detection of fire during 2017. Our assessment focuses on two 
types of skills: (i) to predict FWI as close as possible to the one calculated using station 
information, and (ii) to predict fire events, given real occurrences. 

 
Figure 31: Comparison between modelled FWI and observed FWI value. FWI 
are calculated using ECMWF reanalysis (ERA-Interim) and HRES forecasts at 
different lead times. Observed FWI are obtained using recorded weather 
measurements on the identified SYNOP stations which have at least 30 
observation recorded at local noon in 2017. The box plots are used to describe 
the distribution of mean bias (panel a) and anomaly correlation (panel b) across 
the observation points in 2017 2017 (red dots in the map at the bottom). Vertical 
lines show time zones edges. 

Skill in predicting FWI 

As many forest agencies still rely on observed meteorological data to provide fire 
danger, the first assessment looks at the capability of the ECMWF fire forecast to 
reproduce the same FWI values as would be estimated from a network of local stations, 
2, 6 and 10 days ahead. Despite several meteorological observations are available 
through the SYNOP network, only a subgroup has at least 30 days of recordings at 
local noon during 2017. These selected stations are used to perform an analysis of 
bias and anomaly correlations at different lead times (Fig. 31). For comparison also 
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FWI calculation using ERA-Interim is included. This provides an estimation of the limit 
of predictability when using forcing from model simulations in place of observed values 
(Di Giuseppe et al., 2016). As expected, there is a performance degradation going 
towards longer lead times and mean biases (Fig. 31a) are limited to few units even at 
day 10. However even few units could mean a mismatch in danger level. The anomaly 
correlations (Fig. 31b) provide information on the capability of the forecasting system 
to predict high and low anomalies, where the mean value is taken as the climatology. 
This metric, by comparing anomalies implicitly, removes existing biases that could exist 
between the forecast and the verifying field. An anomaly correlation coefficient (ACC) 
below zero could indicate, for instance, a "dangerous" forecast where a low anomaly 
is forecast in place of a high anomaly event. Values above 0.6 are usually considered 
skillful. FWI from reanalysis have the largest skills as expected and the mean anomaly 
correlation rapidly falls below the 0.6 threshold by day 6. However, the distribution of 
ACC values clearly shows that in selected cases predictive skills can be achievable 
even at day 10. 

Skill in detecting fire events 

While national inventories of wildfire activities exist in many countries, they can be 
heterogeneous and lack the temporal span desirable for the validation of a fire danger 
system at the global scale. Satellite observations can supply a valid alternative 
especially as they cover remote areas where in-situ observations are sparse 
(Flannigan and Haar 1986; Giglio et al., 2003; Schroeder et al., 2008). Daily maps of 
fire radiative power (FRP) (Kaufman et al., 2003; Wooster et al., 2005) are available 
from ECMWF since 2003 through the Global Fire Assimilation System (GFAS) (Kaiser 
et al., 2012; Di Giuseppe et al., 2017; Di Giuseppe et al., 2018). This dataset has been 
developed in the framework of the Copernicus Atmosphere Monitoring Services 
(CAMS) and uses observations from the MODIS sensors on board of Terra and Aqua 
satellite platforms and assumptions on fire evolution to calculate a continuous record 
of active fires. The GFAS dataset integrates all available FRP observations from the 
MODIS sensors available in a day over a regular 0.1 deg grid. It therefore provides an 
indication of the cumulative dry mass available for burning which can be then put into 
a relationship with fire emissions. In this exercise the FRP products are used to identify 
fire occurrence. This is achieved by using a minimum detection, FRP> 0.5 Wm^-2 
(Kaiser et al, 2012). A "hit" is recorded if the fire forecast predicts high fire danger when 
a fire really occurred. The model performance is provided as an average over the 
selected region even if the calculation of the various scores is performed at pixel level.  

For an assessment at the continental scale, we use the fire macro-regions defined by 
the Global Fire Emission Database, GFED4 (Giglio et al, 2013). These macro-regions 
are characterized by different fire regimes and are very roughly homogeneous in their 
burning emissions contribution (Giglio et al, 2013). In Figure 32, we use one year of 
operational service in 2017 to showcase the potential of the use of weather forecasts 
to support the monitoring of fire danger conditions and planning in case of a potential 
emergency. By applying a model-based definition of warning levels to the FWI we have 
shown that it provides a probability of detection (POD, Annex II) for fire activity in 
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Europe that is above 60%, even at day 10. Mid and high latitude forested areas, where 
fuel is abundant have the highest predictability while in savanna/shrub-land regions 
the relationship between FWI and fire occurrence weakens. 

 
Figure 32: Global area averaged Probability of Detection (POD) for day 2-6-10 
forecasts. Pixels where FRP>0.5 Wm^-2 are categorized as ‘significant events’ 
and compared to FWI prediction above the high warning level. The global 
statistic is constructed using all FRP observations detected in 2017 and 
averaged over the specified regions. 
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Figure 33: Monthly-summary plot - comparison of Fire Radiative Power (gray 
dashed line with axis on the right-hand side) with FWI forecasted using the 
deterministic high resolution model for Portugal during the 2017 June event. FWI 
is colour coded based on the percentage of pixels exceeding the high danger 
level calculated at the country/state level. Each of the panel refers to a specific 
fire event described in the text and the statistics have been calculated over the 
red box. 

For an assessment at the local level, we selected Portugal - which experienced 
recurrent intense fire episodes and saw major events taking place in 2017. We looked 
at the Pedrógão Grande fire in June 2017. The affected area is identified as the area 
including all detected active fires (cells with FRP > 0.5 Wm^-2) during the selected time 
window. Figure 33 shows the monthly-summary plot of forecasted information that 
could have been provided for the study areas by the 10-day fire danger high resolution 
forecasts (HRES), had these been already available. The plot shows on the x-axis the 
dates in which FRP was observed and, on the y-axis, the dates forecasts were issued. 
The cell in the bottom left corner shows the percentage of pixels in the study area that 
were expected to be above the high danger threshold on the first day of the first 
forecast issued. The forecasts for day 2 to day 10 are on the same row. The forecasts 
issued on the following day are one row above and so forth. The dashed lines show 
the observed fire radiative power (see also secondary y-axis). 
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The reader is reminded that active fires are triggered by highly unpredictable events 
(ignition) which are not accounted for in the FWI system. The FWI is not supposed to 
provide the exact localization of the event but an indication of anomalous conditions 
that could potentially lead to dangerous fire activities. Large areas can be affected by 
anomalous conditions in the proximity of when the event really occurred. However, it 
is noticeable the capability of the forecast to detect the increase in fire danger 
associated to the event. From June 10 over 80% of the area exceeded the high danger 
threshold (FWI > 20). The FRP spikes (occurred on 17-20 June) highlighted that most 
of the region was classified at very high danger 10 days ahead. In this case, the 
persistency of high danger conditions in a given region for successive forecasts tends 
to increase confidence in the forecasts. 

 

3.5 Droughts7 
Drought forecasts have been built upon seasonal probabilistic hydrological forecasts 
(Section 2.2), which are driven by probabilistic weather forecasts issued by ECMWF-
IFS (Section 2.1.1), see also D2.3 (Ballesteros Cánovas et al., 2017) and D2.4 (Van 
Lanen et al., 2019). These hydrometeorological forecasts are obtained from the 
European Flood Alert System (EFAS). Although EFAS originally was developed for 
flood forecasting (Section 3.1), it has been revised to improve simulation of 
hydrological time series under dry conditions. The hydrological model driven by the 
weather forecasts reproduces the observed low-flow statistics reasonably well, with a 
general tendency of better performance with increasing catchment size (Feyen and 
Dankers, 2009). They validated drought characteristics derived from simulated river 
flow against drought characteristics obtained from observations at hundreds of gauging 
stations across Europe for which long enough daily river flow time series were available 
and analyzed: (i) average annual minima, (ii) average river flow deficits, (iii) minimum 
flows with return period of 20 years, and (iv) maximum deficits with return periods of 
20 years. Time series of hydrological variables simulated with the hydrological model 
in EFAS and the input time series (e.g. precipitation) are the basis for the drought 
identification. These include the so-called standardized drought indices (Section 3.5.1) 
and the threshold-based indices (Section 3.5.2) (e.g. Van Loon, 2015). These indices 
have been calculated using historic hydrometeorological data (from 1990 onwards) 
and forecasted in a probabilistic way up to 7 month ahead. This section concludes with 
algorithms/tools addressing areal drought indices (Section 3.5.3). One way to address 
uncertainty in drought forecasting is by using the ensemble forecasted time series of 
hydrometeorological variables provided by EFAS. For each drought product (PRD-148 
to PRD-160), percentiles (10th, 25th, 50th, 75th, and 90th) are presented, which are 
obtained from 51 ensemble members (see Table 1, Sutanto et al., 2019a). 

                                            
7 There is no report on the U&R aspects of using the European Drought Observatory (EDO) because 
JRC had no person months to work on this activity. 
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3.5.1 Standardized Indices (WUR) 
The analysis of drought forecast uncertainty using the standardized indices has been 
carried out at the pan-European scale. The study has been published (Sutanto et al., 
2019a). 

 
Figure 34: Meteorological drought (SPI) forecasting score for Europe: difference 
between the drought classes derived from the median of 15 ensemble forecasts 
and the observed for the pan-European 2002-2008 droughts. Scores, i.e. % of 
cells that agree (none: no class difference), and disagree (-4 to +4: class 
differences) are provided for the SPI for the four seasons as the starting 
forecasted months, with different accumulation periods (1, 3, 6 and 12 months) 
and lead times (1-5 months). Light green color indicates high forecasting score, 
light brown color indicates medium forecasting score, light red color indicates 
low forecasting score, and white color indicates zero % of area (see Sutanto et 
al. (2019a) for the explanation of the color coding). 

For the pan-European scale, the uncertainty analysis was performed using a re-
forecast dataset to simulate categorical drought classes for European drought and 
non-drought years from 2002 to 2008. For this study, we present a simple approach to 
evaluate drought forecasting score that is well understood by end users compared to 
common skill metrics (Annex II), such as Brier Skill Score (BSS, Brier,1950), Relative 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Winter	(DJF)

none 49.8 50.5 48.4 51.8 48.5 67.4 57.3 51.0 51.8 49.4 80.3 70.0 62.5 58.5 54.5 86.2 79.2 74.3 70.6 66.8
+1 15.3 13.1 8.4 6.4 7.0 10.8 12.0 11.1 7.1 4.0 7.0 9.1 8.9 7.6 5.7 4.9 6.0 5.5 5.1 4.6
+2 22.8 24.5 29.0 28.4 28.2 17.6 22.1 26.6 29.3 33.0 12.0 17.7 22.4 25.8 29.4 8.7 13.8 17.9 20.8 24.0
+3 1.3 0.3 0.2 0.1 0.2 1.0 1.1 0.7 0.3 0.2 0.2 0.6 0.5 0.5 0.3 0.1 0.2 0.2 0.2 0.2
+4 6.2 6.6 7.6 7.1 8.1 2.5 5.2 6.8 7.2 8.2 0.5 2.2 4.5 5.7 6.5 0.1 0.8 1.9 2.9 3.6
-1 0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
-2 3.3 3.5 3.9 3.6 4.6 0.3 1.8 2.8 3.1 3.6 0.0 0.2 1.1 1.9 2.8 0.0 0.0 0.1 0.3 0.7
-3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-4 1.1 1.6 2.5 2.6 3.3 0.0 0.3 0.8 1.2 1.6 0.0 0.0 0.1 0.3 0.7 0.0 0.0 0.0 0.0 0.0

Spring	(MAM)
none 53.7 49.7 47.9 45.2 43.4 67.8 54.0 50.3 47.3 45.9 76.3 64.8 58.9 53.2 52.3 85.5 76.5 70.2 65.4 62.0
+1 7.3 6.2 12.0 18.7 23.2 5.8 5.3 5.0 10.8 17.3 4.3 3.8 4.8 6.5 9.2 2.9 3.2 3.9 5.8 7.8
+2 26.4 28.7 26.2 22.9 20.9 23.6 29.8 31.9 28.9 22.2 17.9 26.1 27.9 27.4 26.5 11.4 19.0 22.8 23.8 23.9
+3 0.4 0.2 0.8 1.1 1.5 0.3 0.3 0.4 1.0 2.2 0.1 0.2 0.2 0.4 0.8 0.0 0.1 0.2 0.3 0.5
+4 6.5 8.1 7.3 6.6 6.1 3.6 6.9 7.4 7.0 6.0 1.2 4.2 5.7 6.2 6.0 0.2 1.2 2.7 3.8 4.3
-1 0.1 0.0 0.2 0.4 0.3 0.0 0.1 0.1 0.2 0.5 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.1
-2 3.5 4.3 3.9 3.5 3.1 0.7 2.8 3.4 3.3 2.8 0.1 0.8 2.0 2.9 3.1 0.0 0.1 0.3 0.8 1.3
-3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
-4 1.4 2.7 1.7 1.8 1.4 0.0 0.7 1.4 1.5 1.4 0.0 0.0 0.4 1.1 1.8 0.0 0.0 0.0 0.0 0.1

Summer	(JJA)
none 51.4 44.7 44.1 44.8 42.4 64.9 54.7 47.7 43.7 42.7 73.6 62.7 57.6 53.0 50.4 82.8 73.6 67.3 63.4 60.4
+1 13.1 21.0 22.6 19.5 22.0 11.1 15.4 19.5 23.4 23.1 8.8 13.4 16.6 18.0 18.7 6.5 9.8 13.5 14.7 15.7
+2 23.6 21.8 21.1 24.0 24.1 19.1 20.0 20.7 19.5 20.7 15.4 17.7 18.0 19.7 21.1 10.1 14.2 15.8 17.0 18.1
+3 1.3 1.5 1.3 0.8 0.9 1.4 2.2 2.8 2.8 2.4 0.5 1.3 2.2 2.8 2.6 0.3 0.7 1.2 1.5 1.7
+4 6.2 6.1 6.1 6.6 6.4 2.6 4.5 5.0 5.5 5.8 1.5 3.5 3.4 3.9 4.7 0.3 1.4 1.8 2.6 3.1
-1 0.3 0.3 0.2 0.2 0.1 0.3 0.5 0.6 0.7 0.6 0.1 0.2 0.5 0.8 0.8 0.0 0.1 0.2 0.2 0.2
-2 2.9 3.1 3.2 3.0 3.0 0.5 2.1 2.6 3.0 3.2 0.2 1.2 1.4 1.6 1.7 0.0 0.2 0.3 0.5 0.7
-3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0
-4 1.1 1.5 1.4 1.0 1.1 0.0 0.4 1.1 1.3 1.2 0.0 0.1 0.2 0.3 0.4 0.0 0.0 0.0 0.0 0.0

Autumn	(SON)
none 47.3 43.2 46.6 46.1 49.9 70.0 55.9 45.4 44.7 48.2 77.4 68.6 63.4 57.8 53.5 83.7 76.0 71.5 67.5 65.0
+1 19.1 19.4 18.4 16.4 14.7 12.0 15.6 18.9 18.3 16.0 10.0 11.9 12.7 13.6 14.7 7.6 9.7 10.6 10.8 11.0
+2 22.4 25.8 24.5 24.6 23.6 14.5 19.3 22.7 24.3 24.1 11.0 15.7 18.3 20.9 22.0 8.2 12.9 15.2 17.9 19.1
+3 1.7 0.6 0.5 0.4 0.5 1.3 1.8 1.7 1.2 1.2 0.9 1.3 1.3 1.3 1.5 0.4 0.7 0.8 0.8 0.9
+4 6.1 6.6 6.0 6.7 6.2 1.6 4.9 6.4 6.4 6.2 0.5 1.9 3.1 4.6 5.5 0.1 0.6 1.7 2.5 3.2
-1 0.2 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.3 0.3 0.4 0.0 0.1 0.1 0.1 0.2
-2 2.5 3.1 2.9 3.8 3.4 0.2 1.8 3.5 3.4 3.0 0.0 0.3 0.8 1.3 2.0 0.0 0.0 0.2 0.4 0.6
-3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0
-4 0.6 1.3 1.1 1.9 1.4 0.0 0.2 1.0 1.2 1.0 0.0 0.0 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.0

SPI-12	with	lead	times	of	(month)Season Class	
difference

SPI-1	with	lead	times	of	(month) SPI-3	with	lead	times	of	(month) SPI-6	with	lead	times	of	(month)
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Operating Characteristic (ROC) curve (Mason, 1982), and the equitable threat score 
(Rogers et al., 1995; see Sutanto et al., 2019a for detailed information on the method). 
In other words the drought class (1: no drought, 2: mild drought, 3: moderate drought, 
4: severe drought, and 5: extreme drought) derived from re-forecasts was compared 
with the class taken from observed data. The forecast score was expressed as the 
difference between the re-forecasted and the observed drought class. Clearly, no 
difference between the classes is the best score (perfect score) and the worst score is 
+4 or -4. Figure 34 shows that the best forecasting score for meteorological drought 
forecasts with perfect forecasts for >60% of the area is up to 3 months ahead in all 
seasons is achieved for Standardized Precipitation Index (SPI-x) with higher 
accumulation period (x=12). SPI index with lower accumulation periods (e.g., 1, 3, and 
6 months) produces a lower percentage of the area for perfect forecasts. The 
hydrological drought forecasts, on the other hand, show better skill score than the 
meteorological ones. The score class of, e.g. the Standardized Runoff Index, SRI-1 is 
comparable with SPI-3 and SPI-6, and SRI-3 is comparable with SPI-6 and SPI-12, as 
expressed by similar values of perfect forecasts (Fig. 35). The detailed information of 
data, methods, and drought forecast skill score is published in Sutanto et al. (2019a). 

 
Figure 35: SRI-x forecasting scores for pan-European 2002-2008 droughts, with 
x = 1, 3, 6, and 12 months: difference between the drought classes derived from 
the median of 15 ensemble forecasts and the observed. 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Winter	(DJF)

none 71.4 58.0 51.9 49.8 47.8 84.9 69.6 55.6 52.2 51.3 90.3 80.0 68.8 62.1 57.2 93.6 86.2 79.0 73.4 68.3
+1 13.2 18.3 16.5 13.7 11.1 7.6 13.4 16.6 14.9 10.2 5.1 9.6 12.7 12.7 10.7 3.3 6.9 9.6 9.6 8.7
+2 12.0 16.4 20.6 26.0 30.6 6.5 12.2 17.7 22.3 27.7 4.3 8.8 13.6 18.6 23.9 2.9 6.2 9.9 14.7 19.7
+3 1.5 2.5 3.4 2.8 1.9 0.5 1.9 3.6 3.0 2.2 0.2 0.8 2.3 2.1 2.0 0.0 0.3 0.7 0.9 0.8
+4 1.4 2.9 4.3 5.2 6.4 0.4 1.5 3.2 4.3 5.6 0.2 0.6 1.5 2.9 4.2 0.1 0.3 0.6 1.2 2.1
-1 0.3 0.7 1.5 1.1 0.9 0.1 0.5 1.5 1.2 1.0 0.0 0.1 0.7 0.7 0.8 0.0 0.0 0.1 0.2 0.2
-2 0.2 0.5 1.2 1.4 1.6 0.0 0.2 0.7 1.1 1.6 0.0 0.1 0.2 0.5 0.9 0.0 0.0 0.0 0.1 0.2
-3 0.0 0.2 0.5 0.4 0.4 0.0 0.1 0.5 0.5 0.4 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0
-4 0.0 0.1 0.2 0.3 0.3 0.0 0.0 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Spring	(MAM)
none 63.8 52.3 52.7 52.2 54.0 78.3 66.2 60.0 53.4 50.9 84.8 74.6 69.9 65.4 60.9 90.9 83.5 78.9 74.7 71.7
+1 13.7 11.0 10.6 14.9 19.2 9.7 9.8 8.0 9.7 14.4 7.4 7.9 5.8 6.2 8.0 4.9 6.0 4.7 4.9 6.1
+2 16.6 27.3 28.6 25.3 20.3 9.3 19.0 26.4 29.4 27.1 6.4 14.4 21.1 24.1 25.0 4.0 9.8 15.4 18.6 19.4
+3 2.5 2.1 0.7 0.6 0.9 1.7 2.1 0.8 0.5 0.8 1.0 1.4 0.6 0.4 0.6 0.2 0.4 0.3 0.3 0.4
+4 1.8 5.1 5.6 5.0 3.8 0.4 1.9 4.0 5.7 5.3 0.1 0.8 2.0 3.3 4.2 0.0 0.2 0.6 1.3 2.0
-1 1.0 1.0 0.2 0.1 0.1 0.5 0.9 0.3 0.1 0.1 0.3 0.6 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1
-2 0.3 1.1 1.2 1.1 0.9 0.0 0.3 0.8 1.4 1.3 0.0 0.1 0.2 0.5 0.9 0.0 0.0 0.0 0.1 0.2
-3 0.2 0.3 0.1 0.1 0.0 0.1 0.3 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1
-4 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Summer	(JJA)
none 71.5 59.5 55.4 51.5 47.6 87.5 73.2 59.5 51.6 46.5 92.3 84.2 75.3 65.1 55.5 94.8 89.3 83.4 77.2 70.8
+1 11.5 18.8 23.6 25.9 28.2 5.7 12.3 19.0 24.6 27.4 3.4 7.1 12.1 17.4 21.8 2.6 5.2 8.5 11.8 14.9
+2 14.6 16.9 16.0 16.7 16.6 6.2 12.0 16.5 16.5 17.0 4.1 8.0 10.5 13.3 15.9 2.5 5.1 7.2 9.2 11.4
+3 0.7 1.0 1.5 2.4 3.1 0.3 0.9 1.6 2.3 3.3 0.1 0.3 0.9 1.9 2.8 0.1 0.2 0.5 0.9 1.5
+4 1.3 2.8 2.9 3.3 3.5 0.2 1.1 2.4 3.2 3.5 0.1 0.4 0.8 1.6 2.5 0.0 0.1 0.3 0.6 0.9
-1 0.1 0.1 0.2 0.4 0.6 0.1 0.1 0.3 0.5 0.8 0.0 0.0 0.2 0.4 0.7 0.0 0.0 0.1 0.1 0.3
-2 0.2 0.7 0.7 0.8 1.0 0.0 0.1 0.5 0.9 1.2 0.0 0.0 0.1 0.2 0.6 0.0 0.0 0.0 0.1 0.1
-3 0.1 0.0 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.3 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1
-4 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Autumn	(SON)
none 68.1 54.9 50.3 51.3 51.5 83.6 68.6 54.8 47.7 46.2 89.2 77.9 69.0 62.0 55.5 93.4 86.1 79.3 73.7 69.0
+1 16.0 22.2 24.1 22.1 19.8 8.9 15.8 21.4 23.9 23.6 6.4 11.9 15.5 17.5 19.4 4.1 8.4 11.5 13.4 14.8
+2 12.5 16.7 17.2 17.4 18.4 6.4 12.1 16.6 18.6 19.0 3.8 8.2 11.7 14.6 17.2 2.3 4.9 7.7 10.0 12.3
+3 1.4 2.1 2.7 2.5 3.0 0.6 1.5 2.6 3.1 3.4 0.4 1.0 1.6 2.2 2.8 0.1 0.4 0.9 1.3 1.7
+4 1.5 2.8 3.3 3.6 3.6 0.4 1.5 2.9 3.8 4.1 0.1 0.6 1.3 2.1 3.0 0.0 0.1 0.5 1.0 1.5
-1 0.2 0.4 0.7 0.7 0.9 0.1 0.3 0.7 1.0 1.2 0.1 0.2 0.4 0.6 0.9 0.0 0.0 0.2 0.3 0.5
-2 0.3 0.6 0.8 0.9 0.9 0.0 0.3 0.9 1.1 1.2 0.0 0.1 0.3 0.6 0.8 0.0 0.0 0.0 0.1 0.2
-3 0.0 0.1 0.2 0.2 0.3 0.0 0.1 0.2 0.3 0.4 0.0 0.0 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.1
-4 0.0 0.1 0.1 0.2 0.2 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

SRI-12	with	lead	times	of	(month)Season Class	
difference

SRI-1	with	lead	times	of	(month) SRI-3	with	lead	times	of	(month) SRI-6	with	lead	times	of	(month)
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The drought uncertainty analysis has also been carried out at the Pilot Site scale. This 
is reported by Van Hateren et al. (2019) and a summary is presented in 
Deliverable D3.4. There, drought forecasts were presented for two river basins namely 
Guardiola (Llobregat catchment) and Ripoll (Ter catchment) located in Catalonia, 
Spain. Meteorological drought forecasts do generally not outperform the climatology 
for short accumulation times (SPI-x, x ≤ 3). Skill increases as accumulation time 
increases (SPI-x, x ≥ 6). The hydrological drought forecasts (e.g. SRI) have good skill 
up to 4 months and the acceptable skill can be achieved for short accumulation 
periods. The skill of hydrological forecasts is higher, i.e. lower uncertainty, than the 
meteorological forecasts. 

The studies of drought forecasting performance using standardized drought indices at 
pan-European scale show that the ANYWHERE meteorological drought products 
(e.g. SPI) have acceptable forecasting skill up to 3 months, especially for longer 
accumulation periods. The skill is higher for hydrological drought forecasts. The 
ANYWHERE hydrological drought products (e.g. SRI, and SGI) have good skill up to 
4 months and the acceptable skill can be achieved for short accumulation periods. The 
capability of ANYWHERE drought forecasts to produce drought hazards up to 3-4 months 
ahead indicates that the ANYWHERE drought forecasting products have low uncertainty 
up to 3 months. The uncertainty becomes higher for longer lead times (LTs). In general, 
drought forecasts show the lowest uncertainty when they are done in winter, whereas 
forecasts performed in spring show the highest uncertainty.  

3.5.2 Threshold-based Indices (WUR) 
An uncertainty analysis of algorithms that forecast threshold-based drought indices has 
not be carried out at the pan-European scale. It has been done at the Pilot Site scale. 
Details are reported in Van Hateren et al. (2019) and a summary in Deliverable D3.4. 
The threshold method approach was selected to analyse droughts in discharge at two 
stations, namely Guardiola and Ripoll located in the Llobregat and Ter river basins 
(Catalonia, Spain). Hydrological drought reforecasts outperform the climatology up to 
lead times of 3-4 months LT. Similar to the standardized drought indices, the forecasts 
of the hydrological threshold-based indices have lower uncertainty (better skill) than 
the meteorological threshold-based drought indices. Storage of water in soils, 
groundwater and lakes is the main reason for the differences. 

3.5.3 Areal Indices (WUR) 
We have not done any specific analysis to assess the uncertainty of algorithms/tools 
that forecast areal drought forecasts (e.g. area in drought in Europe). However, the 
analysis presented in Section 3.5.1 (Fig. 34 and 35), uses pan-European maps for 
each variable and month. Figure 36 shows pan-European maps for meteorological 
drought (SPI-3 drought class) and hydrological drought (SRI-3 drought class) derived 
from reforecast data and observed data for a specific month (August 2003). Moreover, 
the difference between the re-forecasted and the observed drought class is given. We 
see, that in particular the hydrological drought forecast, is perfect in the majority of 
Europe (no difference in re-forecasted and the observed drought class, white areas). 
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This indicates high skill. Figure 36f again shows the higher skill of hydrological drought 
forecasts relative to meteorological ones (Fig. 36c). We also see that in north Europe 
the drought class is overestimated (showed by bluish colors), while in central and south 
Europe, the forecasts under-estimate the drought class (showed by reddish colors). 

 
Figure 36: Hydro-meteorological drought in 2003 expressed as drought severity 
classes using the Standardized Precipitation Index and Standardized Runoff 
Index accumulated over 3 months (SPI-3, SRI-3): (a) forecasted SPI-3 done 
early August 2003 (median of 15 ensembles) for a lead time of 1-month, (b) SPI-
3 obtained from observations for August 2003 (SFO), (c) drought forecasts score 
expressed as difference in drought class between the forecast and the observed 
(a-b). (d,e,f) same as Fig. a,b,c, but for SRI-3. Reddish colors in c and f indicate 
that the forecast underestimates the drought class and vice versa for bluish 
colors. 

3.6 Convective storms, severe winds and heavy snowfall 
The uncertainty of algorithms/tools that forecast typical weather-type natural hazards 
are described. First, small scale convective storms are explained, which are followed 
by heavy snow loads. Uncertainty involved in forecasting different types of precipitation 
is described in the last part. Most of the uncertainty analysis dealing with convective 
storms, severe winds and heavy snowfall, which has been done during ANYWHERE, 
has not been published. Hence, the reporting is somewhat more comprehensive than 
about the previous natural hazards. 
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3.6.1 Detection and forecasting convective cells (FMI) 
The Finnish Meteorological Institute (FMI) pan-European tool used for identification, 
tracking and nowcasting of convective cells (CC-ITN) is based on the OPERA-
composite (Saltikoff et al., 2019) and GLD360 lightning data. The convective cells are 
identified based on a threshold on the precipitation rate and their tracks are followed 
from previous positions as well as extrapolated in the form of storm strike probabilities. 
There are large uncertainties in the nowcasts of convective cells beyond the lead time 
of approximately 30-60 min because of their huge dynamics (Wilson et al., 1998). 
Therefore, the identified convective cells are extrapolated in time and space, with a 
probabilistic forecast that also captures the uncertainty in the future location and 
severity class. The extrapolation is based on storm movement velocities that are 
estimated from previously observed cells. For each identified cell, a severity class is 
assigned based on a statistically-driven climate-adaptive method. A detailed 
description of CC-ITN algorithms is given in D2.3 (Ciavola et al., 2017). 

The uncertainty of the CC-ITN tool has not been tested on real emergency events 
(continuous monitoring and evaluation) due to the tool being relatively new and 
therefore not yet much tested and piloted. Instead, the uncertainty of the CC-ITN 
conducted nowcasts for convective cells was estimated using the FMI radar CAPPI 
product for eight historical convective precipitation events during July-August in 2016 
and 2017 (Table 1). In addition to the inferior spatial and temporal resolution of the FMI 
composite (1 km and 5 minutes) compared to the OPERA composite (2 km and 15 
minutes), the data in the OPERA product is composed of partly dual- and single-
polarization radar measurements with varying quality control schemes, whereas the 
FMI product is composed of only polarimetric data with consistent quality. A radar 
reflectivity threshold of 35 dBZ corresponding to rain rate of approximately 5 mm/h was 
used in identifying the storm cells. 

Table 1: The precipitation events used in the uncertainty estimation of the CC-ITN conducted 
nowcasts for convective cells 
Event Date Start time (UTC) Duration (hours) 

1 27 Jul 2016 04:00 8 

2 31 Jul 2016 06:00 15 

3 2 Aug 2016 05:00 12 

4 3 Aug 2016 07:00 10 

5 31 Jul 2017 19:00 8 

6 1 Aug 2017 10:00 10 

7 12 Aug 2017 14:00 9 

8 13 Aug 2017 00:00 11 
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Two different forecast verification metrics were used in the uncertainty estimation. First 
metric, the reliability diagram (Bröcker and Smith, 2007) measures the reliability and 
the sharpness of a probabilistic forecast. For a given intensity threshold for a yes/no 
prediction, the diagram shows the observed frequencies against the forecast 
probabilities. The reliability diagram is typically accompanied with a sharpness diagram 
that shows the distribution of the probabilities. The second metric uses the relative 
operating characteristics (ROC, Annex II) curve and area under the curve (AUC). 

The reliability diagram, ROC curve, and AUC with respect to lead time were computed 
by pooling the data during the eight events listed in Table 1. The results of the 
experiments are shown in Figure 37 and 38. 

 
Figure 37: Pooled reliability and sharpness diagram of CC-ITN nowcasts during 
convective events in Finland in July-August 2016-2017. The intensity threshold 
is 35 dBZ and the lead time is 15 min. 

  
Figure 38: ROC curve with 15-minut lead time (left) and the AUC with respect to 
lead time (right) for CC-ITN nowcasts during convective events in Finland in July-
August 2016-2017. The intensity threshold is 35 dBZ. 
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The CC-ITN method produces reasonably reliable precipitation nowcasts of convective 
precipitation up to 15-20 min. At 15 min, the reliability diagram (Fig. 37) shows up to 
40% deviation from the diagonal, which becomes more pronounced with probabilities 
over 0.5. On the other hand, the sharpness diagram shows that the whole probability 
range between 0 and 1 is represented in the nowcasts with ~10% of the probabilities 
belonging to the highest range between 0.9 and 1. The above results could be 
improved by additional tuning of the Kalman filter parameters in the CC-ITN algorithm. 

The ROC statistics (Fig. 38) show very small false alarm rates for all probability 
thresholds. However, the low POD values (less than 0.5) indicate a large number of 
misses. This is likely because of the inability of the method to predict intensity changes 
or initiation of new convective cells due to the lack of a life cycle model for individual 
storm cells, which poses a significant limitation of the method that should be addressed 
in future work. The AUC remains close to 0.7 up to 20 min, which indicates a potentially 
useful skill. However, at one hour, this number falls below 0.55, indicating almost no 
skill. 

Based on the analysis, the CC-ITN has troubles producing reliable nowcasts for 
convective cells beyond 30 min, when all convective cells exceeding the threshold of 
35 dBZ are considered independent of their size, as is in the verification above. 
However, in general the lifetimes of small convective cells are short, and their 
development is fast (growth or decay, splitting and merging) making the skill rather low 
beyond lead times of one hour. It should therefore be noted that the largest and most 
hazardous convective storms, so-called Mesoscale Convective Systems (MCS), have 
much longer lifetimes and hence, could be forecasted with much better skill for lead 
times of 1-3 h. These could be also much better observed using the pan-European 
OPERA radar composite than the FMI CAPPI product utilized here. Uncertainty of the 
nowcasts is also increased by the lack of a lifecycle model in CC-ITN, which is a 
limitation of the method that should be addressed in a future work. 

The uncertainty of the severity classification was tested based on the extreme rain 
event that occurred over the Alpine and Central European regions on 11-13 Jun 2018. 
The CC-ITN algorithm was trained using data from June 2017 and then the event was 
classified based on the historical data and information of the current situation. An 
example of the severity classification is presented in Figure 39. 
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Figure 39: Severity classification of convective cells (left column) based on 
OPERA radar composite (right column) on 12 Jun 2018 at 16:00 UTC (top row) 
and at 17:00 UTC (bottom row). 

CC-ITN can classify the severity of convective cells based on historical and current 
information (Fig. 39). As can be seen by comparing the classification results at 16:00 
UTC and 17:00 UTC, the severity class of the convective cells changes as a function 
of time when the event evolves. In this particular case, the event is dissipating, which 
is seen also in the severity of the cells being on general more severe at 16:00 UTC 
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than at 17:00 UTC. While the algorithm correctly classifies the cells according to their 
relative severity, since it has not been tested on real emergency events with continuous 
monitoring and evaluation, not much can be said about the reliability of the severity 
classes in terms of actual impacts from the rain event. However, the algorithm correctly 
classifies cells over Northern Italy, Switzerland and Southern Germany as severe or 
intense, these being the areas with reported storm induced damage caused by the 
extreme rainfall.  

As reported in D2.2 (Cánovas et al., 2017), so far the CC-ITN algorithm is developed 
for convective summer storms, and thus the statistical storm severity classes are 
determined only for summer storms with rainfall making the tool inapplicable for winter 
storms. Additionally, since the European radar network consists of partly dual-
polarization and partly more traditional single-polarization weather radars, to achieve 
a uniform rain estimate the conversion factors are based on single-polarization 
measurements, which adds uncertainty to rainfall estimates. The importance of data 
quality control is emphasized when a statistical analysis of convective storms is 
conducted using an object-oriented convective storm algorithm such as CC-ITN. Since 
a relatively small number of storms represent severe, rare events in the statistical 
analysis, even a few erroneous data points classified as intense can corrupt the 
extreme-value statistics. 

 

3.6.2 Snow-load and gust algorithms (FMI) 
There is a lack of direct measurements of snow load on canopies, which does not allow 
direct verification or uncertainty of the FMI model on snow load (see Annex III for more 
background information). Hence, in this study, we have adopted the approach to 
considering the impact of the snow load on society. The cascading effect caused by 
snow load accumulation is traced, and the correlation between the forecasted 
accumulations is compared with the number of emergency tasks of civil protection 
authorities and electricity fault statistics. Winters 2010-2018 were studied. Three 
classes, wet, frozen and total snow load of the FMI product are analyzed considering 
the environmental conditions of relative humidity, temperature, wind speed, 
precipitation accumulation and height above MSL. The focus of the study is to define 
the critical conditions, in which the damages to forest and infrastructure are occurring. 
These conditions are presumably dependent also on other factors, such as the tree 
age and how the tree during its growth is accustomed to carry snow mass and freezing 
soil conditions, which, nevertheless, are omitted from this analysis. 

 

FMI Snow load model 

In brief, the modeled snow load is classified into four different types: rime, dry snow, 
wet snow, and frozen snow. The increase of the snow load is introduced by 
accumulation of rime and snowfall, and in the riming process, the relative humidity acts 
as input variable. The decrease of snow may occur due to wind removal or melting, 
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and through a change to another category. The possible transformations are wet snow 
freezing into frozen snow and dry and frozen snow changing into wet snow. The 
variables needed in the model calculations are air temperature, precipitation, relative 
humidity, wind speed, global radiation, and cloudiness. In addition, the elevation of 
terrain above sea level affects the riming efficiency in the model. 

The FMI model uses a time step of one hour. For the parametrization, an exemplar 
tree is assumed that has a cone-shaped crown with a projected catchment area of 
1 m2 from above and from the side in the direction of the wind. It is further approximated 
that a 1 mm water layer of melted snow load on a horizontal surface corresponds to a 
1 kg.m–2 snow load on the tree crown. A more detailed description of the calculation 
procedure, including equations, can be found in the appendix A of Lehtonen et al. 
(2014). 

Lehtonen et al. (2014) defined risk values for significant snow load based on observed 
daily average values of temperature, relative humidity, wind speed and precipitation at 
four different locations in Finland, these are shown in Table 2. The average modeled 
values of snow load were 5.35 kg.m–2 for the total crown snow load and 1.72 kg.m–2 
for the rime snow load. The table values were used in this study as a proxy of significant 
snow load events. 

Table 2: Threshold values of daily mean 2 m air temperature (Tmean), 2 m relative humidity (RHmean), 10 
m wind speed (Umean) and total precipitation (Pday) that were defined to determine the risk days 
favorable for heavy snow loading and riming in Lehtonen et al. 2014  

Weather variable Snow loading Riming 

Temperature -3.42°C < Tmean < 1.05°C -5.19°C < Tmean < -0.16°C 

Relative humidity RHmean > 89.44% RHmean > 95.50% 

Wind speed 2.07ms-1 < Umean < 5.63 ms-1 2.00ms-1 < Umean < 4.54 ms-1 

Daily precipitation Pday > 6.41 mm Pday < 1.11 mm 

 

In this study, two different snow load types, wet snow load (WSL) and frozen snow 
load (FSL), were used, as well as the total snow load (TSL). These were examined 
every hour in a 10x10 km grid consisting of 122 x 76 grid points. The same grid was 
used for meteorological data, which includes 2 m temperature, wind speed, 3-hour 
precipitation accumulation and relative humidity. These are stored with a temporal 
resolution of 3 hours in FMI’s climate database. Data was gathered from year 2010 to 
2018, with summer months (JJA) excluded. In 2018 the data ends at the end of May. 

The grid points were classified based on which municipality they lie in (of total 306 
Finnish municipalities). This way, it was possible to define a municipality-wide mean 
value for each of the meteorological quantities at each time step. Lists containing the 
mean values in each municipality were written into separate files for each time step, 
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i.e. 8 times each day. From the hourly snow model files, only the ones corresponding 
to hours 0, 3, 6, 9, 12, 15, 18 and 21 UTC were used. 

To examine the impact of snow load events, two types of impact data were used. 
Firstly, emergency task description data provided by emergency services, and 
secondly, power cut data provided by Finnish Energy. Of the emergency task data, the 
used tasks included categories stating, tasks related to snow and ice or tasks related 
to wind or storm, explaining the cause of the emergency. The data was available by 
coordinates, so a daily number of tasks within each municipality could be defined. 

The power cut data, however, was only available for much wider areas; Finland was 
divided into five regions, because of commercial reasons. Thus, the power cut data 
used in our figures must be considered directional only; each municipality belongs to 
one of the five regions. 

 

Analysis 

The overall image of the emergency tasks resulted from snow during the studied time 
period of 2010-2018 is shown in Figure 40. There are clear peak periods, which largest 
can be seen in the new year’s time of 2017-2018, described in Annex II. There were 
almost 3500 emergency tasks in that period. More detailed images were plotted also 
to each municipality affected (Figure 41). If only events with five or more snow-related 
tasks in one day were considered, this resulted in 76 images, each showing a timeline 
of one month in one municipality. Some of these monthly periods contained more than 
one such event with an increased amount of emergency tasks, and often the minimum 
of five tasks is exceeded on more than one day in succession.  

 
Figure 40: The amount of snow-related emergency tasks during the studied 
period of 2010-2018.  
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Figure 41: An example report of the Joensuu municipality affected by the snow 
related emergency tasks in December 2017. Emergency tasks (snow or wind), 
snow loads (total, wet and frozen), mean temperature (municipality), 3 h 
precipitation accumulation, wind speed and power cuts on a larger area. 

Following the example risk limits presented in Table 2, the different clusters of the 
increased emergency tasks were searched from the data set by examining different 
dependencies of the meteorological data, modeled snow load values and the number 
of tasks. The mean value represents the mean of the eight daily mean values in the 
municipality during the day in question, and the maximum value is the largest mean 
value of the eight daily mean values. The examined time period varied between the 
daily to three-day periods. Figure 42 shows a 2D-histogram of combinations of 
maximum daily wind and daily mean temperature in respect to snow-related 
emergencies (Fig. 42, left), as well as three days mean temperature and precipitation 
(Fig. 42, right). For the three days analysis, it is required that the number of 
emergencies is above the predefined minimum of 5 on each of those three days, but 
the snow load data and other meteorological data is collected over a three-day period. 
This way the idea is to capture the nature of snow load events: often the emergencies 
caused by changes in snow load are divided over more than one day. 

In Figure 42 one can clearly distinguish certain density areas. In the daily plot (Fig. 42, 
left), the area with the highest density seems to correspond to rime snow load at 
relatively high winds and cold temperature, whereas the more widely covering area 
presumably represents emergency tasks related to wet snow load at close to zero 
degree temperature and varying wind speeds. In the three-day plot (Fig. 42, right), 
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similarly, one can recognize the area of high precipitation around 20 mm in three days, 
with the temperature ranging from around -5 degree Celsius to around zero degree 
Celsius. 

 
 

Figure 42: The number of tasks with daily mean temperature and daily maximum 
wind in municipality at left, and at right with the three day mean temperature and 
precipitation (temperature below +2 degree Celsius, while precipitating). 

To define, if the emergency tasks are caused by a certain type of snow load, we have 
separated the data with thresholds. If WSL > 3 mm and FSL < 2 mm on the day in 
question, it is likely that this is a WSL case. If WSL < 3 mm and FSL > 2 mm, it is likely 
an FSL case. In Figure 43 are shown two example images of two-day analysis. The 
data is also divided based on daily accumulated precipitation, maximum wind speed 
and daily mean temperature, as well as the relative humidity thresholds defined in 
Table 2. In Figure 43, the upper row presents emergency tasks caused by FSL when 
the mean relative humidity over 2 days is lower than the threshold value, while the 
lower row shows presumable WSL cases with relative humidity over the given 
threshold value. In Figure 43 one can see clearly that emergency tasks caused by wet 
snow load only seem to happen when the precipitation accumulation over two days is 
more than 5 mm. 
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Figure 43: The number of tasks as function of maximum two-day wind and two-
day mean temperature divided to three different categories according to 
precipitation (P_acc < 2 mm, 2 mm < P_acc < 5 mm, and P_acc > 5 mm.) above 
for rime snow load higher than 2 kgm-2 and below for wet snow load higher than 
3 kg.m-2  

Uncertainty 

To clarify, the uncertainty to utilize the snow load product forecast as pre-warning of 
coming snow-related emergency tasks, the contingency tables of the traditional skill 
scores were calculated. The data covering years of 2010-2018 was divided to the two 
types, WSL and FSL, and the daily number of tasks was selected again to be higher 
than 5. 

Below in Table 3 the counts are shown for: (i) snow load has high value, and the 
number of tasks refers to increased number of events, (ii) snow load has high values, 
but no increased task number is seen, (iii) there are increased amount of tasks, but 
snow load model values are not increased, and (iv) no increased amount of tasks, and 
no increased values of snow load. Here, one count represents one day in one 
municipality when the given temperature and wind conditions prevail; hence the large 
overall numbers. The scores false alarm rate (FAR) and probability of detection (POD) 
are calculated for both snow load types. The POD is 0.2 for WSL and 0.24 for FSL. 
Numbers are very similar and do not give high scores for detecting an upcoming event. 
And the FAR is even worse, for both snow load types the value is 0.99. Hence the high 
snow load value cannot be utilized directly to forecast of an upcoming crisis situation 
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in civil protection. Additional information to interpret the high values is needed, as 
suggested at the start of the section.  

Table 3: The contingency tables for WSL and FSL related emergency tasks 
Snow load types Emergency tasks 

> 5 < 5 

Frozen (FSL) > 5 kg.m-2 12 11746 

< 5 kg.m-2 39 199564 

 

Wet (WSL) > 5 kg.m-2 11 1828 

 < 5 kg.m-2 44 145969 

 

Conclusions  

The FMI snow load model has been operational for more than ten years. Finnish 
meteorologists utilize it to give warnings for society of an upcoming threat of electricity 
outbreaks because of falling trees. But as such, it cannot be solely used as tool to issue 
warnings, as the scores for forecasting are low. It may be useful to indicate upcoming 
risk because of favorable conditions for snow accumulation, as can be seen from the 
huge amount counts, where no high snow load values also provide no increased 
number of emergency tasks. However, meteorologists typically use external 
information of the coming weather situation to scale the potential risk to a correct level. 

This is a preliminary analysis of the impact of the snow load model with a surprising 
result, i.e. the poor correlation to environmental parameters, which were expected to 
correspond more strongly to the snow load accumulation. The future work is to study 
the 76 snow load events in more detail and look for the patterns in the snow load 
events. 

To model accumulated snow load is challenging, as it depends in addition to 
meteorological data on factors, which are not typically available, such as the 
positioning of the tree, its height and growth patterns. Therefore, the current version of 
the model cannot be considered to give an accurate representation of the snow load. 
The model is empirical and still by no means perfect, and to improve the model would 
require a detailed measurement campaign with actual crown snow loads in different 
environments and weather situations. 

 

3.6.3 Probability of precipitation type (ECMWF/FMI) 
The main sources of uncertainty in the precipitation type forecasting are algorithm 
choice and model errors. The uncertainty is greatest for freezing precipitation since its 
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formation needs very specific temperature profile in the lower troposphere. The melting 
and refreezing processes are the key to the formation of freezing precipitation (Reeves 
et al., 2014). First, the ECMWF algorithm for the precipitation type is described, which 
is followed by the description of the FMI algorithm. In the latter the two algorithms are 
also compared. 

3.6.3.1 Probability of precipitation type (ECMWF) 
The medium-range ensemble (ENS) from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) (Section 2.1.1) is 
used to create two new products intended to face the challenges of winter precipitation-
type forecasting. The products themselves are a map product that represents which 
precipitation type is most likely whenever the probability of precipitation is.50% (also 
including information on lower probability outcomes) and a meteogram product, 
showing the temporal evolution of the instantaneous precipitation-type probabilities for 
a specific location, classified into three categories of precipitation rate. 

 

 
Figure 44: ROC curves at different lead times, up to day 7, freezing rain 
probability (left) and rain probability (right). The curves are the plots of hit rate vs 
false alarm rate for each decision threshold (2% interval used). Labels, at 10% 
intervals, are shown for the day-1 forecasts only (in red). The 458black line 
represents no skill. The area under the curve (AUC) for each lead time is shown 
in the grey box. 

A minimum precipitation rate is also used to distinguish dry from precipitating 
conditions setting this value according to type, in order to try to enforce a zero-
frequency bias for all precipitation types. The verification of both products was 
developed using four months’ worth of 3-hourly observations of present weather from 
manual surface synoptic observation (SYNOPs) in Europe during the 2016-19 winter 
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period (Fig. 44 and 45). This verification shows that the IFS is highly skillful when 
forecasting rain and snow, but only moderately skillful for freezing rain and rain and 
snow mixed, while the ability to predict the occurrence of ice pellets is negligible. 
Typical outputs are also illustrated via a freezing-rain case study, showing interesting 
changes with lead time [for more information, see Gascón et al. (2018)]. 

 
Figure 45: Performance diagram for the PREFptype for each type of precipitation 
and for multiple lead times. Labelled solid contours represent the CSI and 
dashed lines are FB with labels along the outward extension of the line. Differing 
sizes of the points indicate the six different lead times (the bigger the size, the 
shorter the lead time, from 0–24 to 144–168 h). 

3.6.3.2 Probability of precipitation type (FMI) 
Prediction models and observation data 

In this section, we verify and compare two probabilistic precipitation type models. The 
first model is based on global European Centre for Medium-Range Weather Forecasts 
ensemble model (ECMWF-ENS), which uses 51 ensemble members and has 
approximately 18 km spatial resolution (Section 3.6.3.1). Probability of precipitation 
type is produced for rain, snow, wet snow, rain/snow mixed (sleet), freezing rain, and 
ice pellets. In the ECMWF product the current minimum values of precipitation rate that 
is applied for each precipitation type are 0.12 mm/h for rain, 0.1 mm/h for sleet, and 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5 Page 64  

 

0.05 mm/h for snow, wet snow, ice pellets and freezing rain. Gascón et al. (2018) give 
more detailed information of this ECMWF precipitation type model. 

The second model has been developed at the Finnish Meteorological Institute (FMI), 
as part of the TOPLINK SESAR project. This prediction model uses output from 
different deterministic numerical weather prediction (NWP) models (ECMWF, HIRLAM 
and GFS) with multiple initial times. The formalization of this process is called a poor 
man’s ensemble prediction system (PEPS) and therefore this model is called FMI-
PEPS in this report. The spatial resolution of this multi-model ensemble is 7.5 km which 
is the resolution of HIRLAM model. The other two models are interpolated to the same 
7.5 km resolution because ECMWF model has 18 km and GFS model 13 km spatial 
resolution. FMI-PEPS model predicts the probability for drizzle, rain, sleet, snow, 
freezing drizzle, and freezing rain. In FMI product the current threshold for all the 
precipitation types is 0.1 mm/h except for freezing drizzle/rain 0 mm/h. Since predicted 
precipitation types between ECMWF and FMI models differ a little, some of the 
precipitation types are combined to make the comparison possible. In the combined 
verification we have four different precipitation types: rain, snow, sleet, and freezing 
rain (Table 4). 

Table 4: Precipitation types in both models and their combinations for model verification/comparison. 
In brackets is the amount of each precipitation type events observed during the verification period 15 
Oct 2016 – 15 Feb 2017. Total amount of observations was 38171 

Precipitation types for 
model verification 

FMI-PEPS model 
precipitation types 

ECMWF-ENS model 
precipitation types 

Rain (3003) Drizzle + Rain  Rain 

Sleet (238) Sleet  Sleet (Rain/Snow mixed) 

Snow (2277) Snow  Snow + Wet snow + Ice 
pellets 

Freezing rain (154) Freezing drizzle + 
Freezing rain 

Freezing rain 

 

The verification period is winter season from 15th October 2016 to 15th February 2017. 
Forecasts were verified against METAR (“METeorological Airport Report”) 
observations from 39 airport weather stations in Europe (Fig. 46). Stations are divided 
into four groups based on their geographical locations to explore if there is regional 
variability in uncertainties. For the verification, forecasts are interpolated bilinearly to 
observation points. We used forecasts from the 00 UTC analysis time and lead times 
from 3 to 120 hours with 3-hour time resolution. 
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Figure 46: Map of the observation stations (airports) divided into four different 
groups based on their geographical location. 

Verification 

The aim of the verification is to examine the uncertainty of the probabilistic precipitation 
type forecasts and compare the skill of ECMWF and FMI models. As metrices we use 
reliability diagram, area under ROC-curve (AUC), Brier skill score (BSS), and 
economic value as verification scores (Annex II). The total amount of each precipitation 
type events observed during the verification period is shown in Table 4. There are quite 
few cases of freezing rain (0.4%) and sleet (0.6%) during the period which should be 
consider when interpreting the verification results. 

Figure 47 shows reliability diagrams for each precipitation type forecasts separately 
with all lead times (3-120 h) combined. Rain forecasts with both models are quite 
reliable but there is little overforecasting on higher probabilities. Diagram also shows 
that FMI-PEPS model (blue) never forecasts over 90 % probabilities. This feature might 
be typical for multi-model ensemble since it usually has more variability between 
members than ensemble from one NWP model. Reliability curves for sleet lies below 
the diagonal which indicates that both models overforecast the sleet. Snow is slightly 
overforecasted with ECMWF-ENS model and underforecasted with FMI-PEPS model. 
Again FMI-PEPS do not have high probabilities (>80%) at all, and this feature is 
emphasized when reliability diagrams are looked separately at different lead times (not 
shown here). Freezing rain forecasts with both models are reliable, since most of the 
forecasted probabilities are low and lie near the diagonal. ECMWF-ENS forecasted 
over 60% only three times and FMI-PEPS only once. 
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Figure 47: Reliability diagrams for probabilistic precipitation type forecasts (blue: 
FMI- PEPS, red: ECMWF-ENS) with all lead times combined (3-120h) for rain, 
sleet, snow, and freezing rain. 

Figure 43 shows that for both models AUC is over 0.5 for all precipitation type at all 
lead times which indicates that forecasts have potential usefulness. AUC is conditioned 
on the observations, whereas reliability diagram conditions on the forecasts. Therefore 
it is important to look both verification measures. As reliability diagrams show (Fig. 47), 
FMI-PEPS model does not forecast the highest probabilities at all which leads to lower 
resolution compared ECMWF-ENS model for rain and snow. For freezing rain and sleet 
FMI-PEPS model has better resolution at the shorter lead times and ECMWF-ENS at 
the longer lead times. 
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Figure 48: The area under curve (AUC calculated with 2% intervals) at different 
lead times for rain, sleet, snow, and freezing rain (blue: FMI-PEPS, red: ECMWF-
ENS). 

The Brier Skill Score for different precipitation type forecasts were plotted as a function 
of lead time in Figure 49. With clearly better resolution, ECMWF-ENS model has also 
better BSS for rain and snow. At shorter lead times FMI-PEPS model has better BSS 
for freezing rain. At longer lead times and for sleet at all lead times there is no clear 
difference between the accuracy of the models. 

When interpreting the BSS, it must consider that sleet and freezing rain occur rarely in 
this sample (Table 4), which makes the climatological forecast very difficult to beat. For 
an extremely rare forecast one can be highly accurate simply by forecasting “no” every 
time. In this situation, a forecast system is severely punished by false alarms. 
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Figure 49: The Brier skill score (BSS) at different lead times for rain, sleet, snow, 
and freezing rain (blue: FMI-PEPS, red: ECMWF-ENS). Reference model is 
sample climatology. 

Figure 50 shows relative economic value (Annex II) for both models at different lead 
times for rain and sleet and Figure 51 for snow and freezing rain. All precipitation type 
forecasts have positive relative economic value at all lead times when loss is much 
larger than cost. However, the value is not very significant for freezing rain at 96-120 h 
lead times. When comparing the results between models, ECMWF-ENS has better 
relative values than FMI-PEPS for rain and snow, especially at longer lead times. For 
sleet and freezing rain, the economic values are little better for FMI-PEPS model at 
shorter lead times. 
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Figure 50: Relative economic value with different cost-loss ratios for ECMWF-
ENS (left) and FMI-PEPS (right) rain and sleet probabilistic forecasts. Different 
lead times are shown with different shades of colors. 
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Figure 51: Relative economic value with different cost-loss ratios for ECMWF-
ENS (left) and FMI-PEPS (right) snow and freezing rain probabilistic forecasts. 
Different lead times are shown with different shades of colors. 

Lastly, we looked the Brier skill score for different precipitation type forecasts at 
Northern European stations, only to see if models have different order in skill in that 
area (Fig. 52, Northern European stations are shown in Fig. 46). Reference model for 
BSS is again sample climatology but the sample is now different (only observations 
from Northern European stations), which means that absolute values of BSS cannot 
be compared between Figure 49 and 52, but the comparison of models relative to each 
other’s is possible. Regarding the BSS, the rank order of the models is quite similar at 
Northern European than at all European station (Fig. 49 and 52). Only in rain forecasts 
the FMI-PEPS model has better BSS up to 36 h when at all European stations the 
model was better up to 12 h. The difference might be caused by the small sample size 
and having a longer verification period would give more reliable results. 
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Figure 52: The Brier skill score (BSS) at Northern European stations at different 
lead times for rain, sleet, snow, and freezing rain (blue: FMI-PEPS, red: ECMWF-
ENS). Reference model is sample climatology (only observations from Northern 
European station included). 

Conclusions 

Verification results indicate that both models forecast all precipitation types overall 
quite reliably, although both models tend to slightly over-forecast the sleet, and FMI-
PEPS model clearly under-forecasts the snow. FMI-PEPS snow forecasts have also 
quite low resolution which indicates that the threshold 0.1 mm/h for snow might be too 
high (e.g. ECMWF model has 0.05 mm/h threshold for snow) and the algorithm itself 
is capable to determine the snow. 

ECMWF-ENS produces more accurate rain and snow forecasts especially at longer 
lead times. FMI-PEPS model has higher BSS for sleet and freezing rain up to 36 and 
48 hours respectively. Still, it must consider that sleet and freezing rain occur rarely in 
this sample and there might also be interpretation errors in observations between 
snow, wet snow and sleet. 

In this point, the verification results indicate that both models and algorithms give 
reliable and skilful probabilistic forecasts for rain and snow up to five days, and for sleet 
and freezing rain up to about 3 days. ECMWF-ENS model is overall better, but at 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5 Page 72  

 

shorter lead times FMI-PEPS model might be equally or more usable for rain, sleet and 
freezing rain forecasts. 

 

3.7 Summary of background information for uncertainty assessment of 
natural hazards 

Table 5 summarizes for the uncertainty analysis per hazard: (i) which forecast products 
have been assessed, (ii) which data have been used, (iii) whether observed or proxy 
data have been used, (iv) length of time series of observed or proxy data, and (v) 
method that has been used to compare the forecasted with. 
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Table 5: Overview of background information for uncertainty assessment natural hazards 
Hazard Tool/algorit

hm 
Product 
numbers 
(D2.4) 

Which data Data type 
(Observed / 
Proxy / 
Simulated) 

Length time 
series 

Comparison method Remarks 
uncertainty 

Floods, 
flash 
floods, 
debris 
flows, 
and 
landslide
s 

FF-EWS PRD-93 to 
PRD-94 

Simulated flash flood hazard from 
actual rainfall observations 

Simulated 2018-2019 
2014 

Qualitative 
comparison 
The ability of the 
model to reproduce 
the flash flood 
hazard level from 
observations  
was evaluated with 
different skill 
scores, e.g. 
CSI 

 

Discharge observations Observed 

FLOOD-
PROOFS 

PRD-95 to 
PRD-97 - - - - Not reported 

Landslide 
and debris 
flow 

PRD-98 to 
PRD-99 

Ground truth observations 
Existing records 

Observed 2010 Qualitiative analysis 
of the model to 
identify the reported 
events 
Also, quantitaitve 
analysis in terms of 
hits, misses, and 
false alarms 
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Table 5: Overview of background information for uncertainty assessment natural hazards (cont’d) 
Storm 
surges 

ESS PRD-100 to 
PRD-104: 

Ground-truth dataset from 208 tidal 
gauges available from the JRC Sea 
Level Database 
(http://webcritech.jrc.ec.europa.eu/
SeaLevelsDb) and EMODNET web 
site (http://www.emodnet-
physics.eu/Map/)) 

Observed 1979-2016 The ability of model 
to reproduce surge 
and waves was 
evaluated using 
different skill 
scores, e.g. 
 
RMSE,%RMSE, 
correlation 
coefficient, 
Normalized BIAS, 
Normalized RMSE 

The model 
performance was 
evaluated not only 
for the whole time 
series, but also 
considering extreme 
surge and wave 
event (upper tail 
>99th percentile). 
Statistics shows a 
satisfactory 
performance of the 
European and 
storm surge model 

Altimetry data via satellite 
measurement  
GLOBAL OCEAN ALONG-TRACK 
L3 SEA SURFACE HEIGHTS 
REPROCESSED from CMEMS. 
Altimeter missions included (Topex-
Poseidon; Topex-Poseidon 
(interleaved orbit); Jason-1; Jason-
1 (interleaved orbit); Jason-1 
(geodetic orbit); OSTM/Jason-2; 
OSTM/Jason-2 (interleaved); 
Jason-3; Sentinel-3A; ERS-1; ERS-
2; Envisat; Envisat (extended 
phase); Geosat Follow On; Cryosat; 
SARAL/AltiKa; SARAL-DP/ALtiKa; 
HY-2A; HY-2A (geodetic orbit)). 
(http://marine.copernicus.eu) 

1992-2016 

Global significant wave height via 
satellite (Queffeulou and Croizé-
Fillon, 2014) 
Missions included ERS-1&2, 
TOPEX-Poseidon, GEOSAT 
Follow-ON (GFO), Jason-1, Jason-
2, ENVISAT and CryoSat, SARAL 

1991-2016 
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ftp://ftp.ifremer.fr/ifremer/cersat/pro
ducts/swath/altimeters/waves/data/ 

Regional 
Storm 
Surge 
model 

PRD-107 to 
PRD-110 

Tidal-gauge located at Stavanger 
(Kartverket) 
http://api.sehavniva.no/tideapi_en.h
tml 

Ob-served 1988-2017 Comparison of 
model performance 
to reproduce storm 
surge at Stavanger 
for selected 
extreme events 

Regional model 
shows a good 
performance for the 
extreme storm 
surge. Wave 
measurements 
were not available 
for the evaluation of 
regional model 

Inundation 
and erosion 
model 

PRD-106; 
PRD-111 to 
PRD-116 

Documentary sources from the 
World Wide Web (pictures, videos’ 
snapshots) of extreme events 
occurred in 1994 

Proxy Historic 
event 

The computed 
inundations were 
compared with a 
visual estimation of 
the flood depth 

Statistics shows a 
good performance 
of the local 
inundation model 
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Table 5: Overview of background information for uncertainty assessment natural hazards (cont’d) 
Hazard Tool/algorithm Product 

numbers (D2.4) 
Which data Data type 

(Observed / 
Proxy / Simu-
lated) 

Length time 
series 

Comparison 
method 

Remarks 
uncertainty 

Heatwaves and 
air quality 

Universal 
Thermal Climate 
Index (UTCI) 

PRD-117 Forecasts (high 
resolution, 
ensemble 
control, 
ensemble 
mean) 

Reanalysis 
(ECMWF ERA-
Interim) 

1 January 2009 
to 31 December 
2012 

Anomaly 
correlation 
coefficient 
(ACC) 

Ensemble mean 
UTCI forecasts 
have higher 
skills in 
predicting heat 
stress 
conditions 

Regional Air 
Quality (RAQ) 

PRD-118 to 
PRD-123 

Forecasts 
(single models, 
ensemble model 

Near-real time 
air quality 
surface 
monitoring data 

9 and 15 June 
2014 

Mean bias (MB), 
modified 
normalised 
mean bias 
(MNMB), the 
root mean 
square error 
(RMSE), 
fractional gross 
error (FGE), 
correlation 
coefficient (R) 

Ensemble 
median RAQ 
forecasts have 
higher skills 
than single 
model forecast 
both at daily and 
seasonal level 
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Table 5: Overview of background information for uncertainty assessment natural hazards (cont’d) 
Weather-
induced fires 

European Fire 
Forecasting 
System and 
Global ECMWF 
Fire Forecasting 
model (EFFIS-
GEFF) 

PRD-124 to 
PRD-136 

FWI (PRD-124) 
combines all the 
other fire 
indices, 
therefore is the 
only one used 
here for 
validation 

1. SYNOP 
2. Fire Radiative 
Power 

1. 1 year (2017) 
2. 1 month 
(June) 

1. Probability of 
detection 
2. Visual 
inspection of 
FRP time series 
versus the 
evolution of fire 
forecasts 

In Europe, the 
POD is 
generally above 
60%, even at 
Day 10. 
At the local 
scale, the 
persistency of 
high danger 
conditions in a 
given region for 
successive 
forecasts tends 
to increase 
confidence in 
the forecasts. 

RISICO PRD-137 to 
PRD-142 - - - - Not reported 

PROPAGATOR PRD-143 to 
PRD-144 - - - - Not reported 
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Table 5: Overview of background information for uncertainty assessment natural hazards (cont’d) 
Hazard Tool/algorithm Product 

numbers (D2.4) 
Which data Data type 

(Observed / 
Proxy/ Simu-
lated) 

Length time 
series 

Comparison 
method 

Remarks 
uncertainty 

Droughts Drought-
Standardised 
Indices 

PRD-148 to 
PRD-151 

Precipitation, 
Precipitation-
Evaporation, 
runoff, and 
Groundwater 

Observed: 
meteorological 
drought  
Proxy: 
hydrological 
drought 

Observed/proxy: 
1990-2018 
Reforecasts: 
2002-2010. 

Drought class 
categorical 
method, and 
skill score 
metrics (BSS) 

 

Drought-
Threshold Indices 

PRD-152 to 
PRD-155 

Discharge Proxy: 
discharge 

Observed/proxy: 
1990-2018, 
Reforecasts: 
2002-2010. 

Skill score 
metrics: BSS 

 

Drought-Areal 
Indices 

PRD-157 to 
PRD-160 

Precipitation 
and runoff 
(presented). 
Groundwater 
(not presented) 

Observed: 
meteorological 
drought  
Proxy: 
hydrological 
drought 

Observed/proxy: 
1990-2018 
Reforecasts: 
2002-2010 

Drought class 
categorical 
method, and 
skill score 
metrics (BSS) 
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Table 5: Overview of background information for uncertainty assessment natural hazards (cont’d) 
Convective 
storms, severe 
winds, and 
precipitation 
types 

Convective cells PRD-161 to 
PRD-162 

OPERA radar 
data composite 

Observed and 
created 
nowcasts 

Eight convective 
events in central 
Europe in 2016-
2017 

Nowcasts are 
compared with 
observations 
and skill scores 
are calculated 
based on these 

 

Snow-load and 
gust algorithms 

PRD-165 to 
PRD-181 

Total snow load, 
freeze snow 
load, wet snow 
load, MET 
parameters CP 
tasks log, 
electricity break 
statistics 

Modeled and 
observations 

2010-2018 Modeled values 
are compared to 
observed 
impacts 

 

precipitation type 
- FMI 

PRD-163 to 
PRD-164 
 

NWP based 
product 
probability of 
precipitation 
product and 
METAR 
observations 

3 hourly 
forecasts and 
METAR 
observations 
from 39 airport 
weather stations 

15th October 
2016 to 15th 
February 2017 

Model estimates 
are compared to 
METAR 
observations 
and comparison 
is also 
performed 
related to similar 
product of the 
ECMWF 

 

precipitation type 
- ECMWF 

PRD-182 to 
PRD-200 

Observations 
from manual 
SYNOP stations 
in Europe (not 
automatic). Only 
stations where 
the difference 
between the 

3-hourly 
observations 
from manual 
SYNOP stations 

3 years, data 
from 15 
October-31 
March. 
Verification 
done on each 
year 
individually, and 

Skill of the 
forecasts were 
measured with 
reliability and 
resolution (ROC 
curves and 
Cost/loss ration 
diagrams). Also 

Improvements 
or changes in 
the version of 
the IFS ENS 
system can 
have some 
effect in the 
precipitation 
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height of the 
closest model 
grid point and 
the height of the 
observation 
point <200m 
were used. 

all three as a 
whole 

a performance 
diagram for for 
all precipitation 
types and lead 
times. 

type products, 
so it is 
recommended 
to compare only 
individual years, 
instead of 
accumulated , 
when significant 
changes in the 
precipitation 
field were 
applied in a new 
cycle (version) 
of the model. 
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4 Robustness of weather-induced natural hazards products 
under a future climate 

The uncertainty of the algorithms/tools to forecast natural hazard products has been 
described in the previous chapter. However, is an algorithm/tool with an acceptable 
forecasting skill also robust? An algorithm/tool with an acceptable skill is supposed to 
perform its intended function when conditions are nominal. As long as design details 
and environmental conditions remain stable, you can count on such an algorithm/tool 
to do its task. But what happens if these same design details and environmental 
conditions start drifting significantly off from nominal? The established acceptable skill 
might alter. Making an algorithm/tool robust, adds complexity to the design process 
(e.g. Jensen, 2014). 

In this chapter we deal with the question if the ANYWHERE algorithms/tools to forecast 
natural hazard products with a particular uncertainty under current environmental 
conditions (Chapter 3) are robust under a future climate. In other words, does the 
uncertainty change? The description of robustness under a future climate is mainly 
based on literature. It appeared to be impossible in ANYWHERE to do a robustness 
modelling experiment to assess natural hazards under a future climate, because this 
would mean weather and hydrological forecasts (Chapter 2) with future climate as 
benchmark. This is clearly beyond the scope of ANYWHERE.  
The outcome of the investigation whether algorithms/tools are transferable in space 
and time (towards a future climate) or not, is explained in the following sections. The 
ANYWHERE developers concluded that none of the algorithms/tools uses a fully 
physically-based approach, which implies that any algorithm/tool has to be 
parameterized. Hence, robustness means whether an algorithm/tool can be 
parameterized in any region in any time. Where does the algorithm/tool works, and 
where not. 

Successively, we describe robustness in using algorithms/tools on floods and 
landslides, storm surges, heatwaves and air quality, fires, droughts, and convective 
storms, severe winds and heavy snowfall. Details on the algorithms/tools and the 
associated products can be found in D2.3 (Ciavola et al., 2017) and D2.4 (Van Lanen 
et al., 2019). As mentioned in Chapter 1, no common methodology could be developed 
and applied to assess robustness of all algorithms/tools that forecast natural hazards. 
Hence, we report separately per hazard, and a table is given (Section 4.6) that 
summarizes per hazard: (i) which forecast products have been assessed, (ii) which 
data have been used, (iii) whether these were observed, proxy or simulated data, (iv) 
what were the length of time series data, and (v) which comparison method has been 
applied. 
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4.1 Flash floods, landslides and debris flows8 
In the project, no specific analyses have been done to assess the robustness of the 
algorithms under a future climate. This section discusses the effect of the changes in 
future climate scenarios. 

The expected increase in the frequency and intensity of heavy rainfall based on climate 
models (e.g. Kundzewicz et al., 2013) should result in more frequent torrential events. 

The algorithm for flash floods nowcasting FF-EWS (UPC) uses on the observed and 
nowcasted catchment-aggregated rainfall to estimate the flash flood hazard at each 
point of the drainage network by comparison with reference values (thresholds) linked 
to a probability of occurrence (or return period). Consequently, the robustness of the 
algorithm will be mainly affected by the robustness of the thresholds of the catchment-
aggregated rainfall used to estimate the return period at each point of the drainage 
network. 

Similarly, the robustness of the algorithm for landslides and debris flows nowcasting 
(UPC; Palau et al., 2020) in future climate scenarios will be affected by the evolution 
of the two components of the method: (i) the evolution of the rainfall Intensity-Duration 
curves used to assess the magnitude of the rainfall event, and (ii) the landslides 
susceptibility of the terrain (strongly related to the future evolution of the land cover). 

Adjusting both algorithms in new climate scenarios would thus require re-calibrating 
the rainfall thresholds for accurate hazard assessment, and in the case of the 
landslides nowcasting algorithm, re-calculating the terrain susceptibility with updated 
land cover scenarios. 

Other factors such as the expected lower predictability of the rainfall systems in the 
future climate scenarios might also have an effect on the performance of both 
algorithms. 

4.2 Storm surges 
First robustness aspects of using the Storm Surge Model at the pan-European scale 
are described followed by the model at the regional scale. The section concludes with 
the Inundation and Erosion Model. 

4.2.1 European Storm Surge model (ESS) (CFR) 
In the ANYWHERE project, no specific analyses have been carried out to test the 
robustness of the European Storm Surge model (ESS) under a future climate. The 
expected changes in future climate scenarios that could affect to the storm surge and 
wave predictions are those related with the intensity, frequency and or path of the storm 
events. Regarding this point, high robustness of the storm surge model is expected, 

                                            
8 The robustness of the Flood-PRObabilistic Operational Forecasting System, Flood-PROOFS (CIMA) 
has not been studied. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 83  

 

since no additional changes should be needed in model parameterization, as proved 
in the validation described in Section 3.2.1. 

Nevertheless, there are several factors that can contribute to reduce robustness of 
forecasting storm surge level and waves under future sea level scenarios. First, the 
uncertainty in projections of sea level increase due to global warming (Jevrejeva et al., 
2016). Sea level rise will directly affect the storm surge levels (Arns, 2015), as well as 
wave predictions (Vousdoukas et al, 2012). Thus, semi-enclosed basins with shallow 
water areas (i.e North Sea, Baltic Sea and/or Northern Adriatic Sea) may be the most 
affected ones. In these cases, a recalibration of the storm surge model may be 
necessary. Moreover, rising mean sea levels may modify the tidal phase and amplitude 
(Idier et al., 2019). Thus, the tidal water level component might need to be modified, 
finally producing changes in surge and waves. Additionally, in turn it can change the 
surge-tide interaction, affecting the model performance in specific areas like the North 
Sea (Fernández-Montblanc et al., 2019). Finally, changes in precipitation and river 
discharge may increase their effects on coastal hydrodynamics, thus increasing the 
necessity to model these phenomena in the European Storm Surge forecasting 
system, which presently does not include these combined interactions. 

4.2.2 Regional Storm Surge model (CFR) 
In the case of the regional model, there is no requirement for further parametrization 
due to variation in frequency, or intensity of storm. Nevertheless, the largest changes 
expected in next century are related to relative sea level rise. Simpson et al. (2012) 
report changes ranging from 0.32-1.21 m for the high-end scenario. Based on the IPCC 
AR5 RCP8.5 the projections of relative sea level rise ranges from 0.35 to 0.79 m 
(Simpson et al., 2015). The most updated projections (IPCC AR5 RCP8.5) show a 
relative sea level increase from 0.28 to 0.9 m (Simpson et al., 2017). However, the 
effect of wind on surge and tidal components is inversely proportional to the water 
depth. Therefore, the effect of sea level changes will be limited in the Stavanger fjord 
area that is characterized by larger gradients of bathymetry nearshore reaching in the 
deepest areas up to 700 m. Indeed, the physiography of the area of Stavanger, being 
located in a fiord confers robustness and diminished the effect of sea level rise effect 
on water level and wave height forecasts under future scenarios. 

Another factor to be considered as potential constrain of the robustness of the regional 
storm surge model is the concurrence of wet hazards. Indeed, under the high emission 
(RCP8.5) scenario, for the period 2071-2100 the 200-year river flood will increase ~31-
40% in the area of Rogaland (Hanssen-Bauer et al, 2017). It may reduce the 
robustness of regional storm surge. This could be solved by including the 
parametrization of new processes, such as the river discharge into the fiord. 

4.2.3 Inundation and erosion model (CFR) 
Robustness of the local inundation model of Stavanger will be mainly related with the 
inputs provided to the algorithms at European and regional scale. On the other hand, 
its robustness will depend on the land-use changes that affect the infiltration and 
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roughness setup for the urban area. Land-use changes are controlled by socio-
economic factors and the implementation of adaptation measures at the local level. 
The intrinsic characteristics of the local flood model, that is the high resolution of the 
different parameters, such as topography, roughness or infiltration, provide a low level 
of robustness to the local algorithm and model parametrization will be needed. 

The robustness of flood forecasting under future climate scenarios may be also 
controlled by the concomitance of heavy rainfall and storm surge phenomena. This 
can increase the flood hazard, and changes in the parametrization of local flooding 
models will be required. Indeed, the RCM-based median projections indicate an annual 
increase in number of days with heavy rainfall of 89% and 49% for RCP8.5 and RCP4.5 
by the end of the century. The winter season shows the largest increases (143% for 
RCP8.5) (Hanssen-Bauer et al,2017), which in turn is the period characterized by the 
higher frequency of occurrence of extreme storm surge. According to Simpson et al. 
(2015), the water level height of the 200-year event in Stavanger, based on the 
reference period 1986-2005, is projected to be exceeded in four out of ten years during 
the present century. 

 

4.3 Heatwaves and air quality (weather-induced health) 
Robustness of using algorithms/tools to forecast heatwaves and air quality products is 
explained. These products are associated with weather-related health. 

4.3.1 Universal Thermal Climate Index (UTCI) (UOR) 
Studies on future projections for UTCI have been performed both at the global and 
local level. At the global level, Kjellstrom et al. (2017) investigated the future UTCI 
bioclimate 2071-2099 (1981-2010 as baseline, ISI-MIP data, HadGEM and GFDL 
models) under a RCP6.0 greenhouse gas scenario. The result of the projection is given 
in Annex IV. The projects show a consistent agreement in predicting conditions of 
higher heat stress and extend into the future the increase in heat stress observed 
during recent past decades (Di Napoli et al 2018). It is worth noting, however, that the 
UTCI cannot not be considered robust on the future climate. This is for two reasons. 
First, bioclimatic indices rely on the current weather and the ability of its forecast. 
Second, bioclimatic indices suppose an ability to acclimatisation (i.e. the adaptation to 
climate) equal to the one nowadays observed in populations. Future acclimatisation is 
expected to be different from the current one and to decrease vulnerability to heat-
related hazards. A few studies have been attempting to include this aspect too (e.g. 
Ballester et al. 2011) but none of them use bioclimatic indices. 

4.3.2 Regional Air Quality (RAQ) (UOR) 
Anticipating future air quality is a major concern and it has been the focus of many 
atmospheric chemistry research projects over the past decades. We here report the 
results from two recent studies on RAQ forecasts under a future climate (Annex V) for 
two pollutants considered in ANYWHERE , namely ozone and particulate matter. 
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One study has been carried out by Colette et al. on ozone (2012). In their analysis an 
ensemble of air quality models covering both regional and global spatial scales were 
implemented in a coordinated manner for future projections of anthropogenic 
emissions at the 2030 horizon. With regards to results’ robustness, changes in the 
concentration of ozone and its precursors are quite consistent across the ensemble 
(inter-model uncertainty). Furthermore, a statistical bias correction at the location of 
monitoring stations was applied in order to derive unbiased proxies of future exposure 
to air pollution. 

Future European particulate matter concentrations have also been evaluated under 
the influence of climate change and anthropogenic emission reductions 
(Lacressonnière et al., 2017). Large differences are observed between the models 
used in the study but the decrease of particulate matter over Europe associated with 
emission reduction was proved robust by the authors conducting the study. 

 

4.4 Weather-induced fires9 
The robustness of the European Fire Forecasting System and Global ECMWF Fire 
Forecasting model (EFFIS-GEFF) is described. 

Currently, EFFIS-GEFF does not run under future climate scenarios, as the estimation 
of fire risk is more valuable at short to medium range and once the ignition has already 
taken place. However, there are works in the literature that have started investigating 
fire probability patterns under seasonal and future climate projections. Below we 
mention the most relevant studies and future research directions. 

At the seasonal scale, Turco et al. (2018) tried to estimate the expected fire activity a 
few months ahead, which would be useful to reduce environmental and socio-
economic impacts through short-term adaptation. The authors found out that using 
currently available operational seasonal climate predictions, the skill of fire seasonal 
forecasts remains high and significant in a large fraction of the burnable area (~40%). 
In the future, ECMWF could attempt to reproduce this study, if/when a seasonal fire 
danger forecasting system will be implemented. 

At longer time scale, Guyette et al. (2014) calculated changes in fire frequency and 
probability under current and future climates using future climate simulations of 
temperature and precipitations (these are some of the main drivers in EFFIS-GEFF) 
and found that fire probability increased in cooler northern and high-elevation regions 
and decreased in some hotter and drier regions. However, they also stated that non-
climatic factor that affect fire might be difficult to predict in the distant future. Syphard 
et al. (2018) used statistically corrected models to map future fire probability patterns 
under climate change. They found that model predictions are highly sensitive to the 
                                            
9 There is no report on the robustness aspects of RISICO - fire danger rating system (CIMA) and 
PROPAGATOR - propagation of a wildfire (CIMA). 
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state of vegetation. If ANYWHERE were to provide forecasts of wildfires under future 
climate we would need to incorporate the vegetation factor (currently omitted in EFFIS-
GEFF), as it seems to play an important role in long-term predictions. 

 

4.5 Droughts10 
There are several global and pan-European studies of drought under a future climate. 
Van Lanen et al. (2018) provide an overview of these studies, incl. uncertainties (see 
for a summary Annex VI), from which some observations about robustness can be 
made. Most of these studies use the threshold-based drought approach (e.g. Van 
Huijgevoort et al., 2014; Prudhomme et al., 2014; Wanders and Van Lanen, 2015; 
Wanders et al., 2015; 2019). A smaller number of drought projections are based upon 
standardized drought indices (e.g. Orlowsky and Seneviratne, 2013; Spinoni et al., 
2018). 

Drought forecasts use seasonal probabilistic hydrological forecasts (EFAS, Section 
2.2) as input, which are driven by probabilistic weather forecasts issued by ECMWF-
IFS (Section 2.1.1). This means that robustness of drought forecasts under a future 
climate firstly depends on the robustness of the seasonal hydrometeorological 
forecasts. Last step in drought forecasts is the identification of drought events using 
two approaches, i.e. the standardized drought approach and the threshold-based 
drought approach, which are driven by the ensemble time series of 
hydrometeorological variables. Robustness of this last step is reported for the 
standardized drought indices and threshold-based indices. 

4.5.1 Standardized Indices (WUR) 
Imperfectness of model structures is one of the reasons for a reduced robustness of 
forecasts algorithms/tools under future climate. Calibration of model parameters on 
current environmental conditions, incl. climate, can hide imperfectness. Orlowsky and 
Seneviratne (2013) have studied past and future meteorological drought using the 
Standardized Precipitation Index accumulated over 12 months (SPI-12).  

                                            
10 There is no report on the U&R aspects of using the European Drought Observatory (EDO) because 
JRC had no person months to work on this activity. 
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Figure 53: Occurrence frequencies (months per year) in Central Europe of “mild 
drought” (SPI12<−0.5) in observation-based datasets and CMIP5 simulations 
(10 yr moving windows). SPI12 values from three observation-based datasets 
(coloured lines) and median, inter-quartile range (IQR) and total range (Range) 
across the CMIP5 ensemble (black line, dark grey and grey shading, 
respectively, total 39 GCMs). SPI12 values are calculated with respect to the 
1979–2009 period for all datasets (derived from Orlowsky and Seneviratne, 
2013). 

They compared the SPI-12 derived from three observed time series of precipitation 
across the globe (SPI-12obs) for the period 1960-2009 with simulated SPI-12 obtained 
from 39 different climate models (SPI-12sim) that were not calibrated. Figure 48 gives 
the outcome for one of the global regions, i.e. Central Europe. The three time series of 
SPI-12obs are within the total range of SPI-12sim time series, but not always within the 
inter-quartile range (Fig. 53). The spread in the range exposes substantial differences 
among models for current environmental conditions. An ensemble of a lower number 
of climate models, which is common for projections or forecasts of hydrological 
extremes, would result into a different median total and inter-quartile range than using 
all climate models. Hence, projections of SPI also depend on the selected set of 
models, i.e. model structures. This also applies to meteorological drought forecasts 
using SPI implying that robustness is affected by the selected climate model(s). 

In ANYWHERE, robustness of drought forecasts has been analyzed at the local scale 
using SPI-x (x=1, 3, 6, and 12 months) (Van Hateren et al., 2019). The analysis was 
performed using the BSS as a skill metric (Annex II). A sensitivity study was performed 
to investigate how robust the forecasts are, if the analysis was performed using other 
thresholds to identify drought, i.e. SPI = 0 and SPI = -1, instead of SPI = -0.5. 

The results of the sensitivity analysis for the drought year 2006-2010 for two 
catchments in Catalonia are visualized in a color-coded table. Four arbitrary categories 
were distinguished, based on what was considered to be an acceptable value. The 
BSS was considered to be good if the values are in between 0.50 and 1.00 (green 
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color), acceptable if the values are in between 0.00 and 0.50 (yellow color), poor if the 
values are in between -0.50 and 0.00 (orange color) and bad if the values are in 
between -� and -0.5 (red color). 

Table 6 shows the results of the sensitivity analysis to assess an aspect of robustness, 
i.e. the threshold that determines if the SPI-x in certain month is below the threshold. 
An acceptable skill is obtained for SPI-12 (BSS > 0.5) for all thresholds and the two 
catchments (except for the Ripoll, threshold SPI=-1). 

Table 6: Summary of the sensitivity analysis of the forecast skills of meteorological drought (SPI) for 
the Ripoll (RI) and Guardiola (GU) catchments (Spain) to explore robustness. The BSS (entire year) is 
divided into two lead time periods: per catchment, the upper row shows the average BSS for lead 
times 1, 2 and 3 months, and the lower row shows the average BSS for lead times 4, 5, 6 and 
7 months 
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I-1
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SP
I-1

 

SP
I-3

 

SP
I-6

 

SP
I-1

2 

RI 
1-3 -0.16 -0.09 0.32 0.68 -0.05 -0.17 0.14 0.67 -0.08 0.01 0.41 0.47 

4-7 -0.14 -0.28 -0.28 0.06 -0.06 -0.38 -0.44 0.33 -0.04 -0.14 -0.13 -0.01 

 

GU 
1-3 -0.29 -0.26 0.25 0.69 -0.30 -0.33 0.23 0.72 -0.16 -0.03 0.25 0.53 

4-7 -0.25 -0.40 -0.38 0.10 -0.33 -0.69 -0.77 0.22 -0.17 -0.23 -0.17 0.06 

 

We can learn from the sensitivity analysis that the differences in BSS for SPI-12 are in 
general rather small, irrespective of the selected threshold, which points at relatively 
high robustness of this model aspect. 

Standardized drought indices are based upon probability distributions that eventually 
convert the empirical distribution into a normal distribution (e.g. McKee et al., 1993). In 
ANYWHERE we used the gamma distribution to forecast standardized drought indices 
(SPI, SRI, and SGI), while the three-parameter log-logistic distribution was used to 
calculate the re-forecasted SPEI (Vicente-Serrano et al., 2010). The gamma 
distribution has quite a flexible shape parameter, which is applicable to the wide range 
of accumulated precipitation in Europe (Stagge et al., 2015). A study by Slater et al. 
(2018) also shows that the gamma distribution can be used for hydrological forecasting 
of both high and low flows. Drought forecasting under a future climate should 
investigate if the probability distribution and its parameters are still valid under a future 
climate. 
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4.5.2 Threshold-based Indices (WUR) 
Several large-scale studies using threshold-based drought indices have investigated 
the impact of applying different models. Wanders and Van Lanen (2015) present the 
projected average and standard deviation of the drought duration and deficit volume 
for different climate regions from three climate models. It is assumed that the smaller 
the differences between the projected drought characteristics are the higher the 
robustness is. Prudhomme et al. (2014) and Wanders et al. (2019) use the spread (e.g. 
inter-quartile range, IQR) in projected drought occurrence from a multi-model 
experiment (several climate and a number of hydrological models) as a metric, the 
lower the spread the higher the robustness. 

 
Figure 54: Projected change in drought duration derived from runoff for three 
GCMs, two emission scenarios and the intermediate (left) and far future (right). 
CTRL specifies the difference between runoff simulated with the GCM and the 
runoff simulated with re- analysis data (proxy for observed). Results are shown 
for the average change of all 244 grid cells. Detailed analysis of projected 
drought can be seen in Alderlieste et al. (2014). 

Another way to approach robustness is by investigating the spread in hydrological 
drought characteristics from the reference/control period (CTRL) among climate 
models. Drought characteristics derived from observed hydrological variables (e.g. 
runoff flow) are compared with simulated runoff from a hydrological model driven by a 
climate model. Alderlieste et al. (2014) has used this approach to calculate the 
difference between hydrological drought duration obtained from observed runoff and 
runoff simulated with climate model input (CTRL) (Fig. 54). 

If the projected change in drought duration is larger than the CTRL, it is assumed that 
the projection is robust, in particular if the hydrological drought duration obtained with 
all three climate models is pointing in the same direction. 

Wanders et al. (2015) have investigated in a global-scale study how robust projected 
hydrological drought characteristics are for the selected threshold approach. In 
modelling experiment they used a threshold which is based upon the runoff in the 
reference period versus a transient threshold that considers a changing hydrological 
regime in the 21st Century. The projected hydrological drought duration and the deficit 
volume are expected to increase from 27% to 62% relative to the end of the 20th C, 
when the benchmark threshold is used. The study illustrates that robustness of drought 
projections is very much dependent on the selected thresholds. 
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4.5.3 Areal Indices (WUR) 
We did not do a specific robustness analysis for the areal indices. However, we believe 
that the findings would not deviate from the standardized drought and threshold-based 
experiences, because basically the areal indices are derived from gridded information, 
which is described in the two previous sections. 

 

4.6 Convective storms, severe winds and heavy snowfall 
The robustness of algorithms/tools that forecast typical weather-type natural hazards 
are described. First, small scale convective storms are explained, which are followed 
by heavy snow loads. Uncertainty involved in forecasting different types of precipitation 
is described in the last part. 

4.6.1 Detection and forecasting convective cells (FMI) 
The CC-ITN algorithm is based on measured reflectivity and therefore, there is no 
restrictions of applying it for future storms (Rossi et al., 2014; 2015). However, the 
statistical determination of storm severity is likely to alter and must be determined 
based on new statistical data. 

4.6.2 Snow-load and gust algorithms (FMI) 
The future climate in northern Europe is projected to change during the 21st century 
(Räisänen and Ylhäisi, 2015). In winter, both temperature and precipitation are 
projected to increase, hence in the coldest areas, snowfall is generally estimated to 
increase (Räisänen, 2015), while over milder regions, a larger fraction of total 
precipitation is expected to fall as rain. How this anticipated change will affect the risk 
of snow damage for trees and infrastructure is not straightforward given the sensitive 
nature of snow accumulation to specific weather conditions. In Annex VII the future 
heavy snow load due to climate change in Finnish forests using the FMI snow load 
model is presented (Lehtonen et al., 2016). The FMI snow load model is an empirical 
algorithm, based on a tuned parametrization of accumulation and removal terms of 
estimated snow load for four different snow load types. The chosen factors are based 
on the meteorological experience and observations. Therefore, the robustness of the 
model in future climate is difficult to be addressed. 

4.6.3 Probability of precipitation type (ECMWF/FMI) 
FMI precipitation type 

No analysis of robustness of the FMI precipitation type algorithm under a future climate 
can be provided. Physical parametrization should be valid also in future climate, but 
thresholds for the frequency of occurrences are expected to change. 

ECMWF precipitation type 

The 5th assessment report from IPCC concludes that for Europe, temperature is 
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increasing for all of Europe, and precipitation is increasing in northern Europe and 
decreasing in southern Europe (IPCC, 2014). However, heavy precipitation is expected 
to increase in all of Europe (Fig. 55). The increase in temperature will have an effect 
on the frequency of freezing rain and sleet (mixed phases) or in the snow, but this will 
vary heavily for different areas, as it will decrease in some areas, and increase in others 
(Groisman et al, 2016). However, the overall is an increase, following the general 
increase in precipitation.  

 
Figure 55: Projected seasonal changes in heavy precipitation defined as the 95th 
percentile of daily precipitation (only days with precipitation >1 mm day–1 are 
considered) for the period 2071–2100 compared to 1971–2000 (in %) in the 
months December to February (DJF, top panel) and June to August (JJA, bottom 
panel) for the emission pathways 4.5 (left column) and 8.5 (right column). 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 92  

 

Whether the precipitation type formulation is robust in terms of future climate is a 
question as to the ECMWF IFS is a robust model for climate change impacts. The 
probabilities of precipitation type products are designed in such a way that the 
precipitation rate variable is involved, indicating different intensities for each type of 
precipitation as well, so the breakpoints could be re-defined for the different intensities 
of precipitation if the climate change requires it in the future. It is important to point out 
that these products are also calibrated for each IFS model cycle and each precipitation 
type. This calibration consists in defining a minimum precipitation rate threshold for 
each precipitation type to have a bias=0 and reduce as much as possible the under-
prediction and over-prediction of the different precipitation types. This will be a very 
useful tool in the future climate to optimize the product whatever the climate conditions 
are. Also, IFS is, as mentioned earlier, constantly changing and is therefore by default 
able to cope with new situations in light of changing physical properties in a future 
climate. The precipitation rate thresholds for probability of precipitation type will have 
to be recalibrated with each new model cycle, but the underlying physics is robust. The 
IFS is already today very close to a full earth system model and, has been shown to 
capture observed climate change well. In fact, it is used as both a climate change 
model within the EC-EARTH consortium and as a reference climate model for the past 
using the reanalysis ERA5 being the latest version. It is therefore likely that the 
precipitation probabilities are robust when it comes to climate change. 

 

4.7 Summary of background information for robustness assessment under 
a future climate 

Table 7 summarizes for the robustness analysis per hazard: (i) which forecast products 
have been assessed, (ii) which data have been used, (iii) whether observed or proxy 
data have been used, (iv) length of time series of observed or proxy data, and (v) 
method that has been used to compare the forecasted with. It appears that robustness 
of algorithms/tools that forecast natural hazards under a future climate covers many 
different aspects, for example, (i) robustness of platforms that forecast weather and 
hydrology under a future climate, which is input to natural hazard algorithms/tools, (ii) 
model structure of natural hazard algorithms/tools, (iii) parameters, and (iv) 
alert/emergency threshold. 
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Table 7: Overview of background information for robustness assessment of natural hazards under a future climate 
Hazard Tool/algorithm Product 

numbers (D2.4) 
Which data Data type 

(Observed / 
Proxy / Simu-
lated) 

Length time 
series 

Comparison 
method 

Remarks 
robustness 

Floods, flash 
floods, debris 
flows, and 
landslides FF-EWS 

 
 
Landslide and 
debris flow 

PRD-93 to PRD-
94 
 
PRD-98 to PRD-
99 

NA NA NA NA 

No specific 
analyses on 
robustness have 
been carried on. 
Section 4.1 
discusses what 
components of 
the algorithms 
will be affected 
by a future 
climate. 

FLOOD-
PROOFS 

PRD-95 to PRD-
97 -    Not reported 

Storm surges ESS PRD-100 to 
PRD-104: NA NA NA NA No specific 

analyses on 
robustness have 
been carried on. 
Section 4.2 
anticipates 
which effect a 
future climate 
might have on 
the model 
parameters of 
the storm surge 
models. 

Regional Storm 
Surge model 

PRD-107 to 
PRD-110 NA NA NA NA 

Inundation and 
erosion model 

PRD-106; PRD-
111 to PRD-116 

NA NA NA NA 
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Table 7: Overview of background information for robustness assessment of natural hazards under a future climate (cont’d) 
Hazard Tool/algorithm Product 

numbers 
(D2.4) 

Which data Data type 
(Observed / 
Proxy / Simu-
lated) 

Length time 
series 

Comparison 
method 

Remarks 
robustness 

Heatwaves and 
air quality 

Universal Thermal 
Climate Index (UTCI) 

PRD-117 

NA NA NA NA 

The UTCI, as 
any other 
bioclimate 
index, is not 
robust 

Regional Air Quality 
(RAQ) 

PRD-118 to 
PRD-123 

Ozone: 
ensemble of air 
quality models 
PM: ensemble of 
regional chemical 
transport models 

EMEP/EEA air 
pollutant 
emission 
inventory 

Ozone: 1998-
2007; 2030 
PM: 1998-
2007, 2050 

Ozone: inter-
model 
uncertainty, 
statistical bias 
correction 
PM: inter-
model 
uncertainty 

Ozone: 
decrease in 
concentration 
PM: decrease 
in 
concentration 

Weather-
induced fires 

European Fire 
Forecasting System 
and Global ECMWF 
Fire Forecasting 
model (EFFIS-GEFF) 

PRD-124 to 
PRD-136 

NA NA NA NA 

Not tested 
under future 
climate 

RISICO PRD-137 to 
PRD-142 - - - - Not reported 

PROPAGATOR PRD-143 to 
PRD-144 - - - - Not reported 
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Table 7: Overview of background information for robustness assessment of natural hazards under a future climate (cont’d) 
Hazard Tool/algorithm Product 

numbers (D2.4) 
Which data Data type 

(Observed / 
Proxy / Simu-
lated) 

Length time 
series 

Comparison 
method 

Remarks 
robustness 

 Drought-
Standardised 
Indices 

PRD-148 to 
PRD-151 

Orlowsky and 
Seneviratne: 
SPI-12 
 
 
 
 
Van Hateren et 
al.: SPI-x (x=1, 
3, 6 and 12) 

Orlowsky and 
Seneviratne: 
proxy observed, 
simulations from 
climate models 
 
 
Van Hateren et 
al.: proxy 
observed, 
simulations from 
ECMWF and 
EFAS platforms 

Orlowsky and 
Seneviratne: 
proxy 1960–
2009, climate 
model 
simulations 
1950–2100 
Van Hateren et 
al.: proxy 1990–
2016, ECMWF/ 
EFAS 
simulations 
2002-2010 

Orlowsky and 
Seneviratne: 
maps, 
descriptive 
 
 
 
 
Van Hateren et 
al.: BSS 

Orlowsky and 
Seneviratne: 
projections: 39 
climate models, 
model 
structures 
 
Van Hateren et 
al.: test 
thresholds in 
standardized 
indices 

Drought-
Threshold Indices 

PRD-152 to 
PRD-155 

Prudhomme et 
al. (2014): 
drought 
occurrence 
runoff 
 
Alderlieste et 
al.: Low flow 
MAM7, 
hydrological 
drought duration 
and deficit 
 
Wanders et al. 
(2015): 

Prudhomme et 
al. (2014):  
climate, 
hydrological 
models 
simulations 
Alderlieste et 
al.: proxy 
observed, 
simulations from 
climate models, 
hydrological 
model 
Wanders et al. 
(2015): proxy 

Prudhomme et 
al. (2014): 2070-
2099 vs. 1976-
2005 
 
 
Alderlieste et 
al.: proxy 1971–
2000, model 
simulations 
1971–2100 (3 
time windows) 
 
Wanders et al. 
(2015): proxy 

Prudhomme et 
al. (2014):  
maps, 
descriptive, 
CDFs 
 
Alderlieste et 
al.: maps, 
descriptive 
 
 
 
 

Prudhomme et 
al. (2014): 
structures of 
climate, 
hydrological 
models 
Alderlieste et 
al.: 
 
 
 
 
 
Wanders et al. 
(2015): test 
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hydrological 
drought duration 
and deficit 
 

observed, 
simulations from 
climate and 
hydrological 
models 
 

1971–2000, 
model 
simulations 
1971–2099 

Wanders et al. 
(2015): maps, 
descriptive 

threshold 
approach 

Drought-Areal 
Indices 

PRD-157 to 
PRD-160 

NA NA NA NA 

Can be derived 
from 
standardized 
and threshold 
indices 

Convective 
storms, severe 
winds, and 
precipitation 
types 

Convective cells PRD-161 to 
PRD-162 NA NA NA NA 

Not tested 
under future 
climate 

Snow-load and 
gust algorithms 

PRD-165 to 
PRD-181 

five global 
climate models 
under RCP4.5 
and RCP8.5, 

Climate models 
with modelled 
snow load 

Comparison of 
periods 1980-
2009 to 2070-
2099 

maps, 
descriptive 

Single climate 
model, snow 
load algorithm, 
hard to address 
robustness 

precipitation type 
- FMI 

PRD-163 to 
PRD-164  
 

NA NA NA NA Not tested 
under future 
climate 

precipitation type 
- ECMWF 

PRD-182 to 
PRD-200 

NA NA NA NA Not tested 
under future 
climate, but 
expected to be 
robust. Because 
included in 
ECMWF-IFS 
update cycles 
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5 Robustness of compound natural hazards 

In this chapter we deal with the question if the ANYWHERE algorithms/tools to forecast 
natural hazard products are robust when analysing compound natural hazards. In other 
words does the uncertainty of algorithms/tools (Chapter 3) change when coinciding or 
cascading hazards occur. This might happen because interactions between natural 
hazards are not fully covered. Analysis of compound hazards is only just on the agenda 
of current research on hydrometeorological hazards, which is reflected by the ongoing 
DAMOCLES COST Action11. This multi-disciplinary initiative coordinates activities 
within Europe to gain a better understanding of compound events. It aims to establish 
a network of communities including climate scientists, hydrologists, impact modellers, 
risk modellers, statisticians and stakeholders (Damocles, 2019). Providing the full 
picture of robustness of algorithms/tools to forecast natural hazard products is 
challenging. Some experiences with ANYWHERE algorithms/tools on compound 
hazards are explained in the following sections. These findings will contribute to a more 
comprehensive view on algorithms/tools to asses compound natural hazards, which 
eventually provide more insight into robustness, i.e. if interaction between hazards 
occurs. 

Successively, we describe experiences within ANYWHERE with algorithms/tools that 
assess compound wet hazards (e.g. coastal flooding) followed by compound dry 
hazards (fires, heat stress, drought). We conclude the chapter with a table 
(Section 5.3) that summarizes per compound hazard: (i) which forecast products have 
been assessed, (ii) which data have been used, (iii) whether these were observed, 
proxy or simulated data, and (iv) what were the length of time series data. 

 

5.1 Wet natural hazards 
We start with an explanation of cascading wet events, namely how extreme 
precipitation triggers a sequence of consequences with significant magnitude. 
Pathways of cascading in three European regions are described. The section 
concludes with a description of compound events in the coastal region (combined 
storm surges and river mouth flooding). 

5.1.1 Cascading effects of extreme precipitation with pathway schemes (UNIGE) 
Extreme precipitation events with high local precipitation intensities, heavy snowfall or 
extensive freezing rain can have devastating impacts on society and economy. Not 
only is the quantitative forecast of such events sometimes difficult and associated with 
large uncertainties, also are the potential consequences highly complex and 
challenging to predict. It is thus a demanding task to anticipate or nowcast the impacts 

                                            
11 http://damocles.compoundevents.org/stsm.php. 
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of extreme precipitation, even more so in situations where human lives, or critical 
infrastructure might be at risk. 

In recent years, the term “cascading effects” has been increasingly used to describe 
events in which an initial trigger leads to a sequence of consequences with significant 
magnitude. We here analyze three examples for different precipitation types where the 
initial triggering event generated a cascade of events and impacts, namely a 
convective precipitation event in the Swiss Prealps, a freezing rain in Slovenia, and a 
heavy snowfall episode in Catalonia. With the aim to improve process understanding 
of complex precipitation-triggered events, we assess the prediction of the selected 
events and analyze the cascading effects that caused diverse impacts. To this end, we 
use a framework of cascading effects which should ultimately allow the development 
of a better design risk assessment and management strategies. Readers are referred 
to Schauwecker et al. (2019) for a comprehensive description of the study. 

Our findings confirm that damage of extreme precipitation events is clearly related to 
the knowledge of potential cascading effects. Major challenges of predicting impacts 
of cascading effects are, e.g. the high complexity and the interdependencies of the 
consequences, as well as the increasing uncertainty along the cascade (starting with 
the uncertainty of the forecast, see Fig. 56). Due to these challenges, we suggest that 
it is more difficult to assess the robustness in forecasting precipitation-triggered 
cascading hazards compared to single hazards and different approaches are needed 
(not evaluated here).  

 
Figure 56: Scheme of challenges in anticipating cascading effects. The forecast 
of the triggering event is already related to uncertainty (depending on the 
precipitation type, situation etc.). Along the cascade with increasing time and 
complexity, the uncertainty increases significantly. Interdependencies appear 
where several elements are interconnected, and key boundary conditions control 
the cascade at certain points.  
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To assess cascading effects of heavy precipitation, we propose a framework including 
two approaches: (i) one to analyze cascading effects during past extreme precipitation 
events, which then serves as a basis for a (ii) more generalized approach to increase 
the preparedness level of operational services before and during future extreme 
precipitation events and to anticipate potential cascading effects of extreme 
precipitation. Both approaches are based on pathway schemes that can be used in 
addition to numerical models or hazard maps to analyze and predict potential 
cascading effects, but also as training tools. 

5.1.2 Coastal flooding (CFR) 
To explore coincidence of extreme storm surge events and extreme river discharges, 
compound effect of extreme storm surge level (SSL) and river discharge (DISC) at river 
mouth has been analyzed. The analysis has been performed using two reanalysis 
datasets. The SSL dataset spans the period 1979 to 2016 and covers the pan-
European domain with 10 km resolution along the coastline (Fernánez-Montblanc et 
al., in press). The river discharge dataset covers the period 1990 to 2016 and has a 
spatial resolution of ~5 km (JRC-LISFLOOD reanalysis, SFO dataset). 

 
Figure 57: Coincidence of storm surge (SSL) and river discharge (DISC) along 
the European coastline for the period 1990-2016: (a) % of time medium hazard 
SSL and DISC level is equalled/exceeded, and (b) % of time high hazard SSL 
and DISC level is equalled/exceeded. 
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The hazard level for both datasets was ranked according to a predefined threshold. 
Thus, low hazard was defined for values of SSL and DISC below 90th percentile, 
medium hazard was considered when SSL and DISC values were between 90th and 
99th percentiles. High hazard occurred when SSL and DISC were above the 99th 
percentile. Subsequently, 3D (latitude, longitude, time) binary blocks for each hazard 
SSL and DISC were constructed. Finally, the analysis to identify compound wet hazard 
hot-spots was done by considering the period 1990-2016. Low-, medium- and high- 
multi-hazard occurrences were defined when the respective thresholds where 
exceeded for both datasets. 

Compound wet hazard hot-spots were identified for the period 1990-2016. The 
analysis of storm surge and river discharge equaling/exceeding the medium hazard 
levels shows a high level of coincidence of the two hazard analyzed with the exception 
of the northernmost part of Europe (lat. > 60º) (Fig. 57a). The high degree of 
coincidence along the western European coast facing the Atlantic should also be 
noted, which can be related with the trajectories of low pressure system, the main 
driver of both phenomena. The coincidence of storm surge and river discharge 
equaling/exceeding the high hazard level is significantly lower than for the medium 
hazard level (Fig. 57b). The maximum % of time of coinciding of these wet events in 
the coastal region for the high hazard level is about 10 times lower than for the medium 
hazard level (0.4 versus 5%), which of course is connected to the pre-defined 
thresholds. Higher level of coincidence of events was observed in the western and 
southern part of the Iberian Peninsula, and also in the south of Italy and the English 
Channel. There is a well-document occurrence of compound wet events for the 
southern regions of Italy, where small mountain catchments in coastal areas of 
Campania, Calabria and Sicily were flooded regularly, which have caused economic 
losses, as well loss of lives (Aronica et al., 2009). 

The previous analysis has identified areas with high level of coincidences of storm 
surge and high river discharge at river mouths, especially for the medium hazard level. 
This preliminary investigation of compound wet hazards in coastal regions along the 
European coastline is subject to several limitations, which affects robustness. The 
main constrain is related to the temporal resolution of the river discharge dataset 
(daily). A more detailed analysis will require higher temporal resolution, accounting for 
the interaction with tidal dynamics and its time-scale. For areas where surge and river 
discharge occur simultaneously, their joint probability distribution needs to be 
determined, adopting more sophisticated numerical approaches like multivariate 
statistical modeling (Bevacqua et al., 2017). 

Especially in large catchments, river discharge could increase the total water level near 
the river mouth, increasing the SSL hazard in the nearby coastal zones. At the same 
time, especially in large estuaries, the river outflow can be hampered by the total water 
level at the river mouth. The near future challenge on forecasting SSL and river 
discharge is to evaluate their mutual influence considering the interaction between 
these processes at pan-European scale. Likewise, the assessment of changes in the 
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spatial pattern and interaction of SSL and river discharge under future climate 
scenarios needs further investigation (Bevacqua et al., 2017). 

5.2 Dry natural hazards 
In the first part compound wildfire and heat stress are described, which is followed in 
the second part by three so-called dry hazards (fires, heatwaves and droughts). 

5.2.1 Combined wildfire and heat stress (ECMWF/UOR) 
Heat stress and forest fires are often considered highly correlated hazards as extreme 
temperatures play a key role in both occurrences. This commonality can influence how 
civil protection and local responders deploy resources on the ground and could lead to 
an underestimation of potential impacts, as people could be less resilient when 
exposed to multiple hazards. Earlier a simple methodology to identify areas prone to 
concurrent hazards was published (Vitolo et al., 2019b). The methodology exemplified 
with, but was not limited to, heat stress and fire danger. The combined heat and forest 
fire event that affected Europe in June 2017 was used to demonstrate that the 
methodology can be used for analyzing past events as well as making predictions, by 
using reanalysis and medium-range weather forecasts, respectively. The operational 
use of new spatial layers was proposed, mapping the combined danger and making 
suggestions on how these could be used in the context of a Multi-Hazard Early Warning 
System. These products could be particularly valuable in disaster risk reduction and 
emergency response management, particularly for civil protection, humanitarian 
agencies and other first responders whose role is to identify priorities during pre-
interventions and emergencies. 

The new proposed layers include a map of hotspots of combined danger (Fig. 58, 
focused on Europe) that can be used to analyse the extent of a past event and its 
spatial correlation with other observed variables (working in retrospect, this makes use 
of reanalysis data) or to make a prediction for the future (using forecast data). The 
confidence in the identification of combined danger in a given area is provided by a 
map of probability of occurrence that is generated by spatial overlap of fire danger and 
heat stress ensemble forecasts (Fig. 59, with a focus on the Iberian Peninsula). Lastly, 
an overview of the evolution of the forecasts is provided by the monthly forecast 
summary plot for combined hazards (similar to Fig. 33).  

Assessing the uncertainty and robustness of the newly generated combined danger 
maps is particularly complex because they are forecasted maps of hazard. The 
quantification of the risk to the population and environment would require information 
on exposure and vulnerability. This means any actual occurrence of fire requires the 
appropriate conditions (expressed by the fire danger index), an ignition source as well 
as populated areas, presence of fuel, lack of access to transport/means of self-
evacuation, no insurance, amongst others. Heat stress is conditional to people being 
outdoors or not using air conditioning systems indoors as well as the environmental 
conditions expressed by the index. Nevertheless, uncertainty for a past event can be 
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assessed in terms of spatial accuracy of hotspot location and temporal span in which 
a dangerous signal can be predicted. 

 
Figure 58: Multi-hazards hotspots forecast maps (forest fire and heat stress) at 
pan-European scale. The maps are generated on 17th June 2017 and with a 10-
day horizon. 

A preliminary assessment of the utility of these new layers was made in collaboration 
with various stakeholders (see Table 2, Vitolo et al., 2019b), amongst them is the 
Instituto Português do Mar e da Atmosfera (IPMA) who collaborated with decision 
makers in the 2017 event in Pedrógão Grande. Positive feedback was recorded, with 
the Portuguese Institute stating: “we liked the new layers, they identify well areas at 
risk, [...] they would have been useful during the event” [IPMA, Lourdes Bugalho, 
personal communication]. This statement highlights the importance, for stakeholder, to 
correctly identify hotspots of danger. It is also important that forecasts provide enough 
notice to allow preparedness and, in case of emergency, efficient allocation of 
resources. 
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Figure 59: Map of probability of occurrence of very high multi-hazard danger over 
the Iberian Peninsula, generated on 17th June 2017. 

As already mentioned in Sections 4.3.1 and 4.4.1, we currently have no modelling tools 
to explore the effects of future climate scenarios on either fire or heat stress danger. 
Consequently, we cannot foresee if/how their interplay will change in the future. 

5.2.2 Heatwaves, drought and fires (WUR/ECMWF/UOR) 
Coinciding or cascading dry hazards are expected to have more negative impacts than 
each of the hazards alone (Liu et al., 2016). For example, the drought that occurred in 
2003 was not the most severe in Europe (Spinoni et al., 2015). However, in 
combination with extended heatwaves and fires, it is considered as the most fatal and 
costly. More than 70,000 people passed away as a result of extreme heat conditions 
(Robine et al., 2008; Di Napoli et al., 2018) and the economic damage amounted to 
over 8.7 billion EUR (EC, 2007). In this study on compound dry hazard, we try: (i) to 
investigate through historical data the coinciding and cascading events of dry hazards, 
namely drought, heatwaves, and fires across Europe, and (ii) to develop a 
methodology to explore these events on daily basis. Here we define coinciding hazards 
as two or more extreme events occurring simultaneously, i.e. on the same day and in 
the same region. We define cascading events as two or more extreme events (as 
single and/or as coinciding hazards) occurring successively without being interrupted 
by a zero-hazard day. 

The analysis of coinciding and cascading dry hazards was carried out on daily basis 
for the summer seasons (June, July, August; referred to as JJA hereafter) from 1990 
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to 2018 across Europe (for details, see Sutanto et al., 2019b). This is the period when 
high-impact heatwaves take place and droughts and/or fires may lead to even higher-
impact compound events. 

 
Figure 60: Hotspots of coinciding dry hazards (P90 of yearly % of number of 
compound days for each year/total number of summer days x 100): a) compound 
drought-heatwave, b) heatwave-fire c) drought-fire, and d) the three dry hazards 
all together in Europe obtained from daily proxy observed datasets covering the 
JJA periods of 1990-2018. 

Figure 60 shows hotspot locations that were calculated from the 90th percentile of the 
yearly number of days with concurrent hazards (P90) divided by the total number of 
summer days (92 days). Hotspot locations for coinciding drought-heatwave appeared 
to be spread throughout Europe with a stronger signal in France, Italy, Spain, and east 
Europe (Fig. 60a). However, the occurrence of drought-heatwave is relatively small, 
ranging from 0-4%. An interesting result is found for coinciding heatwave-fire 
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(Fig. 60b). Hotspots are clearly identified in the Scandinavian countries, and to some 
extent in Portugal and Sicily Italy. The number of heatwave-fire occurrences is twice 
as high compared to drought-heatwave, especially in northern Europe (up to 8%). The 
coinciding event with the highest occurrence in Europe is drought-fire (Fig. 60c). Large 
extents of concurrent drought-fire hotspots are clearly identified in central Ireland, 
southeastern UK, parts of Germany, southeast France, western Italy, and southeastern 
Europe. The Iberian Peninsula is not listed as a hotspots area although they also suffer 
from coinciding drought-fire events (Pausas and Fernández-Muñoz, 2012; 
Gudmundsson et al., 2014). In this region, the occurrence of drought-fire is less than 
in central Europe. The hotspots of all three dry hazards concurring mainly occurred in 
large parts of west, central, and east Europe, from southern UK, France, Germany, 
Italy, to Romania and Bulgaria, and less frequent in southern Europe, such as Spain, 
and eastern Scandinavia (Fig. 60d). 

Table 8: The most frequent cascading patterns of dry hazards in Europe calculated from daily proxy 
observed datasets covering the JJA periods of 1990 to 2018. D stands for drought, F stands for fire, 
and H stands for heatwave 

 
Understandably, the high occurrence of coinciding drought-fire (DF) (Fig. 60c) appears 
also in the cascading patterns of dry hazards, as obtained by summing up the number 
of cascading events in the JJA periods of 1990-2018 across Europe, i.e. at all grid cells 
(Table 8). DF can be found in 7 out of 10 of the most frequently occurring patterns of 
cascading events. Most cascading events in Europe are dominated by the occurrence 
of drought in the beginning, i.e. they start with drought, followed by the compound 
drought-fire (D-DF, Table 8 row 1). This cascading pattern occurred 5.9%, or 32,584 
events out of 555,931 events multiplied by 100%, calculated from all land grid cells and 
from 2668 days. Cascading patterns starting with fire (F) and heatwave (H) are found 
at rank 3 and 5 with an occurrence of 4.5% and 4.05%, respectively. Interestingly, 
there is a high number of events that started with fire and ended up with drought (F-D, 
4.5%). This cascading event occurred only for short periods as the frequency of fire 
occurring in a cascading event is relatively low compared to drought. 

		
No	 Cascading	pattern	 Number	of	

events	(-)	 Number	of	events	(%)	

1	 D-DF	 32584	 5.9	
2	 D-DF-F	 31247	 5.6	
3	 F-D	 24817	 4.5	
4	 D-DF-D-DF	 22877	 4.1	
5	 H-HF	 21989	 4.0	
6	 F-DF	 20501	 3.7	
7	 DF-D	 19213	 3.5	
8	 DF-F	 14860	 2.7	
9	 F-DF-D	 7589	 1.4	
10	 HF-H	 7257	 1.3	
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Our study concludes that dry hazard hotspots were identified largely for an area 
stretching from west to east Europe, from southern UK, France, Germany, Italy, to 
Romania and Bulgaria, and with a lower frequency in southern Europe, such as Spain, 
and eastern Scandinavia. In the study period 1990-2018 (JJA), 0.55% of all cells had 
an occurrence of all dry hazards in the same day. Droughts dominate in coinciding and 
cascading dry hazard events and mainly control the number and duration of cascading 
events, especially in the Mediterranean. In most cascading events, drought appears 
first as a single hazard, followed by the concurrent drought-fire. This leads to a 
combination of drought, and drought-fire, as the most frequent cascading pattern of 
dry hazards in Europe (5.9%). The probability of coinciding and cascading dry hazard 
occurrence calculated from this study is relatively small. However, it will increase in 
future due to climate change. The development of MH-EWS that counts for coinciding 
and cascading hazard therefore is at utmost importance. We note that we had to use 
proxy data to determine the occurrence of the three selected dry hazards, as long time 
series of reported dry hazards do not currently exist. The use of real observations, 
such as from radars, satellites, and gridded in situ observations will provide a more 
robust analysis. The detailed information of data, methods, and drought forecast 
uncertainty and robustness is published in Sutanto et al., 2019b. 

 

5.3 Summary of background information on assessment of compound 
natural hazards 

Table 9 summarizes experiences on wet and dry compound hazards (coinciding and/or 
cascading) obtained during the lifetime of the ANYWHERE project. For each compound 
event, the following information is provided: (i) type of compound event, (ii) which data 
have been used, (iii) whether observed, proxy or simulated data have been used, (iv) 
length of time series, (v) method, and (vi) reference. 
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Table 9: Overview of background on assessment of compound natural hazards 
Compound 
hazards 

Hazards Type of 
compound 
event 

Which data Data type 
(Observed / 
Proxy / Simu-
lated) 

Length time 
series 

Method Remarks 

Wet hazards Cascading effects 
of extreme 
precipitation with 
pathway schemes 

Cascading We used a large 
variety of 
forecast and 
observation 
data connected 
to the three 
cases  

Observations, 
forecasts 

up to approx. 
1 week for each 
of three study 
cases 

Compare past 
forecasts with 
in-situ 
observations for 
three case 
studies 

Three cases in 
Switzerland, 
Slovenia and 
Spain 
(Schauwecker 
et al., 2019) 

Coastal flooding Coinciding Storm surge 
levels, river 
discharge 

Storm surge: 
simulated along 
the coastline, 
river discharge: 
proxy 

Storm surge: 
1979-2016, river 
discharge: 
1990-2016 

Maps with 
European 
coastline, 
descriptive 

Fernánez-
Montblanc et al. 
(in press) 

Dry hazards Combined wildfire 
and heat stress 

Coinciding Reanalysis, 
and ECMWF 
HRES, 
ENS 

Proxy observed, 
simulated 
climate data, 
Local Authority 
records, 
Portugal 

1 month (June 
2017) 

Maps, visual 
inspection 

Stakeholders 
interviewed 
were satisfied 
with the 
information on 
combined 
hazards and are 
willing to test it, 
operationally, 
during future 
events (Vitolo et 
al., 2019b) 

Heatwaves, 
droughts and fires 

ERA5: daily 
max and min 
temperature. 
Soil moisture 
SFO data. 
FWI 

Proxy Daily data from 
1990 to 2018 for 
summer months 
(June, July, and 
August). 

Combining 
binary time 
series. 

Maps, 
descriptive 

Sutanto et al. 
(2019b) 
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6 Operationalizability of forecast and nowcast tools/algorithms/ 
products 

In the previous chapters we described in a thorough way the uncertainty and 
robustness of the platforms/algorithms/tools that are used in ANYWHERE to forecast 
natural hazards. In this chapter we translate for each platform/algorithm/tool the 
comprehensive information in operational terms, namely: (i) development stage, (ii) 
uses, (iii) required data/resources to be implemented at the local and pan-European 
scale, and (iv) possible deviation from what originally was promised at start of the 
ANYWHERE project (June 2016). The development stage is characterized by the so-
called Technology Readiness Level (TRL) scale, which was introduced for the EU 
funded projects in 2014, as part of the Horizon 2020 framework program (see for a 
brief description, Annex VIII). We describe the operationalizability aspects at the level 
of platforms/algorithms/tools, but if there are differences in these aspects for products 
generated by a particular platform/algorithm/tool then we make a distinction between 
these forecast/nowcast products. 

 

6.1 Overview of operationalizability 

An overview of the development stage for the development stage of ANYWHERE 
platforms/algorithms/tools is given in Table 10. Slightly over 50% of the 
platforms/algorithms/tools that reported development stage is at TRL=9 meaning 
that these technologies have proven in an operational environment. About 10% is 
below TRL=5, that is, technology is not validated in relevant environment yet. From 
the remaining 40%, almost all algorithms/tools have a technology already 
demonstrated in a relevant environment (TRL=6). 
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Table 10: Overview of development stage of platforms/algorithms/tools to forecast natural hazard 
 Platform/ 

Algorithm/ 

tool 

Product numbers Develop-
ment stage 

(TRL, Annex 
VIII) 

Remarks 

Hy
dr

om
et

eo
ro

lo
gi

ca
l f

or
ec

as
ts

 a
nd

 n
ow

ca
st

s 

Meteorologica
l forecasts 
and nowcasts 
products 

IFS-ENS PRD-1 to PRD-
32 9 

 
IFS-ENS-EXT  
IFS-ENS-SEAS  
HIRLAM PRD-201 to 

PRD-203 9 
 

HARMONIE-
AROME 

PRD-204 to 
PRD-217 

Previously reported as 
GLAMEPS and LAM- MEPS 

Precipitation 
nowcasting (UPC) 

PRD-33 to PRD-
39 9 

The algorithm is working in 
real-time in the European 
Flood Awareness System 
(EFAS) 

PhaSt PRD-40 to PRD-
42 9 

Operational in Liguria, Italy 

RAVAKA PRD-43 to PRD-
58 - 

Has been removed, see 
footnote section 2.1 

Downscaling 
(UNIGE) 

- 6 No product number 

Hydrological 
forecasts 

EFAS  9  

 

Na
tu

ra
l h

az
ar

d 
fo

re
ca

st
s 

Floods, flash 
floods, debris 
flows, and 
landslides 

FF-EWS PRD-93 to PRD-
94 9 

The algorithm is working in 
real-time in the European 
Flood Awareness System 
(EFAS) 

FLOOD-PROOFS PRD-95 to PRD-
97 - Not reported 

Landslide and 
debris flow 

PRD-98 to PRD-
99 6  

Storm surges ESS PRD-100 to 
PRD-104: 6  

Regional Storm 
Surge model 

PRD-107 to 
PRD-110 6 

Inundation and 
erosion model 

PRD-106; PRD-
111 to PRD-116 6  
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Table 10: Overview of development stage of platforms/algorithms/tools to forecast natural hazard 
(cont’d) 

  Platform/ 

Algorithm/ 

tool 

Product numbers Development 
stage 

(TRL, Annex 
VIII) 

Remarks 

Na
tu

ra
l h

az
ar

d 
fo

re
ca

st
s 

Heatwaves 
and air quality 

Universal Thermal 
Climate Index 
(UTCI) 

PRD-117 
6 

 

Regional Air 
Quality (RAQ) 

PRD-118 to 
PRD-123 9  

Weather-
induced fires 

European Fire 
Forecasting 
System and 
Global ECMWF 
Fire Forecasting 
model (EFFIS-
GEFF) 

PRD-124 to 
PRD-136 

9 

 

RISICO PRD-137 to 
PRD-142 - Not reported 

PROPAGATOR PRD-143 to 
PRD-144 - Not reported 

Drought European Drought 
Observatory 
(EDO) 

PRD-145 to 
PRD-147 - 

Not reported in D2.5, but 
TRL=9 (operational service) 

Drought-
Standardised 
Indices 

PRD-148 to 
PRD-151 8 

 

Drought-
Threshold Indices 

PRD-152 to 
PRD-155 8  

Drought-Areal 
Indices 

PRD-157 to 
PRD-160 5  

Convective 
storms, 
severe winds, 
and 
precipitation 
types 

Convective cells PRD-161 to 
PRD-162 3  

Snow-load and 
gust algorithms 

PRD-165 to 
PRD-181 9  

precipitation type - 
FMI 

PRD-163 to 
PRD-164  9 

 

precipitation type - 
ECMWF 

PRD-182 to 
PRD-200 9  
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6.2 Operationalizability of hydrometeorological and forecast and nowcasts 
products 

This section describes operational aspects of using platforms/algorithms/tools (Fig. 1, 
❶ and ❷) that generate hydrometeorological forecast and nowcast products. The 
hydrometeorological and forecast and nowcasts are divided in weather forecasts and 
nowcasts (Section 6.2.1) and hydrological forecasts (Fig. 1, ❸ and ❹) 
(Section 6.2.2).  

6.2.1 Meteorological forecast and nowcasts products 
The first part explains operational aspects of platforms/algorithms/tools that produce 
weather forecasts, which is followed by operational aspects of nowcasts 
algorithms/tools. The section concludes with an example that describes operational 
aspects of the downscaling example. 

 

ECMWF Integrated Forecasting System (ECMWF-IFS) 

a) Development stage (TRL) of the platforms/tools/algorithms/products 
The ECMWF Integrated Forecasting System (ECMWF-IFS) has proven in an 
operational environment (TRL=9). 

b) What purposes the platforms/tools/algorithms/products have been used 
The ECMWF-IFS is the basis for several algorithms/tools that forecast natural 
hazards using the ANYWHERE MH-EWS. ECMWF-IFS provides global 
probabilistic weather forecasts. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The platform is run by the ECMWF and needs lots of inputs. Very specialized 
knowledge and experience is required run the platform. Downscaling of output 
is needed for several local applications (e.g. Section 2.6.1). License is requisite 
to obtain ECMWF-IFS output. 

d) Deviation of final platforms/tool/algorithm relative to originally promised (DoA at 
start of ANYWHERE , June 2016) 
ECMWF implements updates of IFS on a regular basis. Since June 2016 there 
has been 4 major updates (cycles) implemented of the IFS model. None of 
these has been a change in resolution of the atmospheric variables, but there 
has been changes to the physics. It is very difficult to assess the impact on the 
actual forecasts since there are always natural variability in the skill. However, 
the ensemble forecasts of precipitation have over the time of the project showed 
a slow but steady improvement (Fig. 61). For a full update on the model 
changes of IFS, see weblink 12. 

                                            
12 https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 112  

 

 
Figure 61: The range at which the 12-month mean centred on that month of the 
continuous ranked probability skill score of the 24-hour precipitation ensemble 
forecast dropped below 10%. Figure taken from www.ecmwf.int. 

 

FMI Numerical Weather Prediction models (FMI-NWPs) 

a) Development stage (TRL) of the platforms/tools/algorithms/products 
As stated in Section 2.1.2 the NWP products provided by FMI are based on 
already operational models of HIRLAM, HARMONIE-AROME and the product 
of precipitation type utilizes also the synoptic scale from GFS and ECMWF. 
Therefore these products have reached the majority of TRL 9 (i.e. actual system 
proven in operational environment). They are produced as part of the FMI 
operational production chain and are distributed to the end-users in Finland 
through the FMI ILMANET-service and for ANYWHERE through A4EU-platform. 
The accuracy of temperature, wind gust and precipitation rate is verified 
continuously and results are presented in real time in the FMI pages13. The 
forest fire index product is continually performed by the forecasting 
meteorologists and based on this analysis the products are developed further. 

b) What purposes the platforms/tools/algorithms/products have been used 
The platforms are used in Finland by the forecasting meteorologists to create a 
full picture of the weather situation and they are provided to the end-users upon 
request. Typically, e.g. the civil production authorities are following the wind gust 
and forest fire index products to estimate the threatening weather-induced 
hazards and impact. In ANYWHERE these NWP products were applied for the 

                                            
13 https://ilmatieteenlaitos.fi/saaennusteen-osuvuus. 
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A4FINN impact tool to create the weather-related combined impact level for the 
ISTIKE pilot site. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
These models cover the computational area of the used NWP model. To 
implement these to wider or different area, this would need the suitable existing 
NWP model parameters. These are available, but typically open access models 
are with coarser resolution, therefore similar resolution cannot be guaranteed, 
if the NWP model assumptions need to be changed. The change for the wind, 
temperature and precipitation products would require data programming skills, 
however not scientific research. For the forest fire index feasibility of the 
algorithm behind should be customized to the governing surface and forest 
types. 

d) Deviation of final platforms/tools/algorithms relative to originally promised (DoA 
at start of ANYWHERE , June 2016) 
In the beginning of project, different NWP model products were offered to the 
ANYWHERE -project for A4FINN. The change was explained in the D2.3 (Ciavola 
et al., 2017), the products offered at the start were based on a model, which 
development is decided to stop, and the newly chosen products that were 
included in the project are now more likely to have longer lifespan. 

 

UPC-CRAHI algorithm for precipitation nowcasting 

a) Development stage (TRL) of the tools/algorithms/products 
The UPC-CRAHI algorithm for precipitation nowcasting has proven in an 
operational environment (TRL=9). The current version of the algorithm has been 
running to generate some of the products of the flash flood layer of EFAS, and 
several configurations (one at Continental scale, and four for the pilot sites) 
have been implemented in the ANYWHERE MH-EWS. 

b) What purposes the tools/algorithms/products have been used 
The precipitation nowcasts are used as a product that can be accessed on the 
A4EU platform to monitor the evolution of precipitation situations in the near 
future. They are the main inputs to the FF-EWS flash-flood hazard nowcasting 
algorithm. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The algorithm only requires high-resolution gridded quantitative precipitation 
estimates (QPE), such as those from regional, national or Continental weather 
radar networks. Typically, the resolutions of these radar products are of the 
order of 0.5-2 km and 5-15 min. In the context of ANYWHERE , the algorithm has 
been applied with the regional radar QPE products of the Meteorological 
Service of Catalonia for the Pilot Site of Catalonia, and the OPERA radar 
composites (expanded with the Italian national radar composite for the first 
time in the framework of ANYWHERE) over Europe and for the Pilot Sites of 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 114  

 

Liguria, Corsica, Canton Berne and Spain. But there is no restrictions to include 
other national/regional composites where available. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviation. 

 

Radar-based nowcasting precipitation PhaSt (CIMA)14 

a) Development stage (TRL) of the tools/algorithms/products 
The Radar-based nowcasting precipitation algorithm PhaSt has been 
operational in the Liguria region since 2010 (TRL=9). 

b) What purposes the tools/algorithms/products have been used 
Phast could be used operationally by a local user or civil protection to better 
predict precipitation. 

 

Downscaling precipitation mountainous regions (UNIGE/METEODAT) 

a) Development stage (TRL) of the tools/algorithms/products 
The downscaling and bias correction approach has been calibrated and 
evaluated for areal precipitation of three study sites in the Swiss mountains. The 
study has been submitted (Schauwecker et al., 2019) The technical readiness 
of the forecast downscaling approach in a relevant environment is achieved 
(TRL=6). 

b) What purposes the tools/algorithms/products have been used 
The approach has been used to downscale (to a 2 km horizontal resolution) and 
bias-correct ECMWF IFS-HRES daily precipitation forecasts with a focus on 
heavy precipitation (>20 mm day-1) and medium lead times (2-5 days) in 
mountain regions. The main purpose is a medium-range forecast for an 
operational application of decision makers and intervention bodies. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The approach has the potential to be applied at a pan-European scale. We 
developed and evaluated the approach for a mountain environment in the Swiss 
Alps, but this bias-correction and downscaling approach has also the potential 
to be applied to other mountainous or flat regions. The main strength of the 
approach is that it is computationally cheap. It is therefore possible to run it for 
a larger region without exceptional amounts of computational resources. The 
requirements are: (i) meteorological station data of daily precipitation, and (ii) 
time series of past daily precipitation forecasts of a certain forecast model. 

                                            
14 Point c) What is needed to implement it, and point d) Deviation of final tool/algorithm relative to 
originally promised  at DoA are not reported. 
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These data are used for the calibration phase to compute the correction factors 
per month, cell and precipitation intensity. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE, June 2016) 
Since it was not foreseen to implement this tool in the MH-EWS, there is no 
deviation from the DoA (version June 2016). 

 

6.2.2 Hydrological forecast products 
a) Development stage (TRL) of the tools/algorithms/products 

The European Flood Alert System (EFAS) has proven in an operational 
environment (TRL=9). 

b) What purposes the tools/algorithms/products have been used 
Input time series of EFAS (gridded probabilistic weather forecasts derived from 
ECMWF-IFS) have been used by the drought algorithms (Section 3.5) to 
forecast meteorological drought across Europe. Output from EFAS (gridded 
probabilistic forecasts of hydrological time series) drives some algorithms for 
flood forecasting (Section 3.1.1) and algorithms for hydrological drought 
forecasting at the pan-European scale (Section 3.5). 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The EFAS platform is run by the ECMWF and needs lots of inputs. Very 
specialized knowledge and experience is required run the platform. Usually, 
downscaling is not needed for local applications, if a spatial scale of 5 km 
acceptable. Users can get access to EFAS output via the Copernicus 
Emergency Management Service15. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE, June 2016) 
No deviation, other than an update of the spatial coverage (major update of 
EFAS) in May 2018. This update was implemented in the operational ANYWHERE 
platform and the products were recalibrated accordingly. There was no 
disruption to the service. 

 

6.3 Operationalizability of tools/algorithms for forecasting & nowcasting of 
natural hazards 

This section describes operational aspects of using algorithms/tools (Fig. 1, ❺) that 
translate hydrometeorological forecast and nowcast products (Fig. 1, ❸ and ❹) into 
natural hazard forecast products (Fig. 1, ❻). Successively, we describe 
operationalizability of algorithms/tools on floods and landslides, storm surges, 

                                            
15https://emergency.copernicus.eu/mapping/ems/early-warning-systems-efas-and-effis. 
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heatwaves and air quality, fires, droughts, and convective storms, severe winds and 
heavy snowfall. 

6.3.1 Floods, flash floods, landslides and debris flows 
The first part explains operational aspects of algorithms/tools that produce flood 
forecasts, which is followed by operationalizability of algorithms/tools that generate 
forecasts on landslides and debris flows. 

 

Flash flood hazard and impact assessment algorithm (FF-EWS) (UPC) 

a) Development stage (TRL) of the tools/algorithms/products 
The Flash flood hazard and impact assessment algorithm (FF-EWS) has proven 
in an operational environment (TRL=9). The current version of the algorithm has 
been running to generate some of the products of the flash flood layer of EFAS, 
and several configurations (one at Continental scale, and four for the pilot sites) 
have been implemented in the ANYWHERE MH-EWS. 

b) What purposes the tools/algorithms/products have been used 
The algorithm nowcasts the flash flood hazard level based on radar-based 
rainfall nowcasts. The tool has been used to follow situations of heavy rainfall 
and their evolution in the near future (few hours). 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The implementation of the algorithm requires processing a Digital Elevation 
Model to retrieve the flow directions and the drainage network. In the context of 
ANYWHERE , we have worked with a resolution of 1 km for the European FF-EWS 
product, and 50-200 m for the setups done in 4 Pilot Sites (Canton Bern, 
Corsica, Liguria and Catalonia). The algorithm inputs are the rainfall forecasts 
generated with the UPC-CRAHI algorithm for precipitation nowcasting. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviation. 

 

Landslides and debris flows hazard and impact assessment (UPC) 

a) Development stage (TRL) of the tools/algorithms/products 
Within the ANYWHERE project, the algorithm for landslides and debris flows 
hazard and impact assessment has been validated in relevant environment 
(TRL=5), and the algorithm has just started running in real time as part; i.e. 
being demonstrated in relevant environment (TRL=6). 

b) What purposes the tools/algorithms/products have been used 
The algorithm provides a warning of the areas that potentially affected by 
landslides. The outputs are provided at very high resolution (30 m at regional 
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scale), and aggregated over polygons to facilitate the identification of the most 
affected areas. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Implementation of the algorithm requires the use of an existing landslides 
susceptibility map, or the production of one [Palau et al. (2020) used a simple 
methodology for Catalonia using datasets available everywhere in Europe]. 
The rainfall inputs to the algorithm come from high-resolution weather radar 
rainfall estimates and nowcasts. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016). 
The development of the algorithm has been limited to the Pilot Site of Catalonia. 
Extensive work has been done to retrieve a landslide susceptibility map for 
Catalonia. Also, some works have been done to test the transferability of the 
algorithm to a new domain (in particular, to Canton Berne) using standard 
datasets available with European coverage. 

 

6.3.2 Storm surges 
First operational aspects of using the Storm Surge Model at the pan-European scale 
are described followed by the model at the regional scale. The section concludes with 
the Inundation and Erosion Model. 

 

European Storm Surge model (ESS) (CFR) 

a) Development stage (TRL) of the tools/algorithms/products 
The European Storm Surge model (ESS) has been extensively validated 
(Fernández-Montblanc et al., 2019; Fernández-Montblanc et al, in press) and 
demonstrated in the context of the ANYWHERE platforms, so TRL 6 – Technology 
demonstrated in relevant environment – has been assigned. Figure 62 shows 
an example of a recent storm surge level forecast during the Hurricane Lorenzo. 
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Figure 62: Example of the storm surge level product during the Hurricane 
Lorenzo showed in A4Demos for 2 October 2019, forecasted on 1 October 2019. 

b) What purposes the tools/algorithms/products have been used 
The output of the European storm surge model (PRD100-104) has been used 
to provide 72 hours horizon forecast of the extension, magnitude and duration 
of the hazardous conditions derived from marine storms at pan-European scale. 
The algorithm provides not only storm surge or total water level related 
products, but also the wave characteristics (magnitude, period and 
direction).They have been included in the ANYWHERE platform (A4Demos and 
A4Cat). 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
As a pan-European-oriented algorithm, the storm surge European model was 
widely tested and implemented. Further action will be required to maintain the 
system beyond the ANYWEHRE project and to integrate the outputs in 
platforms such as the Copernicus Emergency Management Service. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviation for the final algorithms of the European Storm Surge model. 
Additionally, a second version of the algorithm (~2 km resolution) it is already 
under validation to enhance the results observed during the demonstration 
period. 

 

Regional Storm Surge model (CFR) 

a) Development stage (TRL) of the tools/algorithms/products 
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The Regional Storm Surge model has been validated with ground truth data in 
Rogaland (Norway) and demonstrated in the context of ANYWHERE platform, so 
TRL 6 – Technology demonstrated in relevant environment. 

b) What purposes the tools/algorithms/products have been used 
The output of the Regional Storm Surge Model (PRD107-110) has been used 
to provide 72 hours horizon forecast of the extension, magnitude and duration 
of the hazardous conditions generated by marine storms (storm surges and 
waves hazards) at Rogaland (Norway). The algorithm provides a high resolution 
forecast of sea surface level, significant wave height, peak wave period and 
peak wave direction. Figure 63 provides an example. The product has been 
included in the ANYWHERE platforms A4Demos and provided temporal and 
spatial information of the marine storm derived hazard to the end user and the 
Emergency Manager in Rogaland. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The Regional Storm Surge model has been tested and implemented at regional 
scale in Rogaland Norway. Further action will be required to maintain the 
system beyond the duration of ANYWEHRE project and to integrate the 
algorithm outputs in the local natural hazard emergency system. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviation are observed from the originally promised. 
 

 
Figure 63: Example of the A4Demos platform showing the sea surface level 
PRD-107 during an extreme event occurred on 12 January 2017 at Rogaland 
(Norway). 
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Inundation and erosion model (CFR) 

a) Development stage (TRL) of the tools/algorithms/products 
The Inundation and erosion model has been validated and demonstrated in the 
context of ANYWHERE platform, so TRL 6 – Technology demonstrated in relevant 
environment. 

b) What purposes the tools/algorithms/products have been used 
The output of the Local Inundation and Erosion model (PRD112-115) has been 
used to provide forecast of the extension and magnitude of the coastal flooding 
in the City of Stavanger (Norway). The algorithm provides high resolution maps 
of maximum flow velocity, maximum inundation depth and hazard inundation in 
the City of Stavanger (Fig. 64). The product has been included in the ANYWHERE 
platforms A4Demos and provided temporal and spatial information to the end 
user and the Emergency Manager in Stavanger. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Further needed investment is not requested to implement the system at local 
level since it has been tested and implemented at local scale in city of Stavanger 
(Norway). Further action will be required to maintain the system beyond the 
duration of the ANYWHERE project and to integrate the algorithm outputs in the 
local natural hazard emergency system. 

 
Figure 64: Example of the A4Demos platform showing the maximum inundation 
depth (PRD-113) in combination with the critical points located in the city center 
of Stavanger and potentially flooded during the coastal flood occurred on 12th 
January 2017 Stavanger (Norway). 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviations are observed from the originally promised. 
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6.3.3 Heatwaves and air quality (weather-induced health) 
Operational aspects of using algorithms/tools to forecast heatwaves and air quality 
products is explained. These products are associated with weather-related health. 

 

Universal Thermal Climate Index (UTCI) (UOR) 

a) Development stage (TRL) of the tools/algorithms/products 
The development of the UTCI algorithm is at stage 6 of the TRL scale. The 
algorithm, which delivers UTCI forecasts with a 10-day forecast horizon, is not 
yet operational within a numerical weather prediction model framework. 
However, the algorithm has been validated and demonstrated within the 
ANYWHERE platforms which represent a relevant environment for the purpose. 

b) What purposes the tools/algorithms/products have been used 
The output of the UTCI algorithm (PDR-117) has been used for the prediction 
of thermal-related human discomfort during the summer season. Forecasts of 
the UTCI have been provided to and included in ANYWHERE platforms both at 
the European and pilot site level. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The UTCI algorithm is already implemented both at the local and the pan-
European scale. No further action is needed. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviations. 

 

Regional Air Quality (RAQ) (UOR) 

a) Development stage (TRL) of the tools/algorithms/products 
The development of the RAQ algorithm is at stage 9 of the TRL scale. The RAQ 
algorithm, which has been included in the ANYWHERE platforms, corresponds to 
the regional air quality forecasting system developed by the Copernicus 
Atmosphere Monitoring Service (CAMS, see D.2.1 Van Lanen et al., 2017, and 
D2.3 Ciavola et al., 2017). The regional air quality forecasting system is 
therefore an actual system already proven in operational environment. 

b) What purposes the tools/algorithms/products have been used 
The RAQ algorithm provides air quality forecasts at the pan-European scale, 
specifically the predicted concentrations (4-day horizon) of major air pollutants 
at the surface level (PRD-118 to PRD-123). These are ozone, nitrogen dioxide, 
sulphur dioxide, carbon monoxide and particulate matters below 10 and 2.5 
microns. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Regional Air Quality at the pan-European scale is obtained from CAMS. 
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d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviations. 

 

6.3.4  Weather-induced fires (European Fire Forecasting System and Global 
ECMWF Fire Forecasting model, (EFFIS-GEFF) 

a) Development stage (TRL) of the tools/algorithms/products 
The GEFF algorithm runs operationally at ECMWF since 2018, supporting the 
European Fire Forecasting System and Global ECMWF Fire Forecasting model 
(EFFIS-GEFF). The algorithm is open source 
(https://git.ecmwf.int/projects/CEMSF/repos/geff/browse) and its outputs have 
been thoroughly documented and validated (Vitolo et al. 2019; Di Giuseppe et 
al. 2016). As such, the development of the GEFF algorithm is at stage 9 of the 
TRL scale (has proven in an operational environment). 

b) What purposes the tools/algorithms/products have been used 
The GEFF algorithm provides fire danger indices (e.g. the Canadian Fire 
Weather Index) in the form of: (i) 10-day deterministic high resolution forecasts, 
also called HRES; (ii) 15-day ensemble forecasts, called ENS and (iii) 40 years 
of renalysis based on ERA-Interim and ERA-5. The full list of data products is 
available in D3.1 (Smith et al., 2017), from which the HRES version of PRD-124 
to PRD-129 were selected by users to be visualised in A4EU and local apps. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The algorithm is already implemented and runs at global scale, incl. Europe. 
Users can get access to EFFIS-GEFF output via the Copernicus Emergency 
Management Service16. EFFIS provides standard danger classes on its website 
(https://effis.jrc.ec.europa.eu/about-effis/technical-background/fire-danger-
forecast/). For this reason, the interpretation of the FWI values can be 
considered standardised. First responders using the FWI forecasts are 
expected to integrate this information with local knowledge of the topography 
and vegetation.  
As EFFIS outputs have a resolution of 9Km (HRES) or coarser (ENS and ERA-
based reanalysis), the use of these layers is limited to national and regional 
levels. For more local-scale studies we suggest making use of RISICO 
(developed by CIMA foundation). 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE, June 2016) 
No deviations. 

 

                                            
16 https://emergency.copernicus.eu/mapping/ems/early-warning-systems-efas-and-effis. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 123  

 

6.3.5 Droughts 
Development stage is reported for the standardized drought indices, threshold-based 
indices and areal drought indices. 

 

Standardized Indices (WUR) 

a) Development stage (TRL) of the tools/algorithms/products 
The ANYWHERE drought early warning system using the standardized indices is 
already in the pre-operational mode since 2018 (Fig 65) and has been tested in 
the pilot site, Catalonia, since September 2017. Hence, the development stage 
is classified TRL=8 (System complete and qualified). The highest TRL level 
scale (actual system proven in operational environment), could be achieved if 
we keep the ANYWHERE MH-EWS operational, e.g. via the ANYWHERE 
Foundation. 

 
Figure 65: The Standardized Precipitation Evaporation Index (SPEI) for July 
2019 forecasted in May 2019 (lead-time: 3-month) for the pan-European region, 
as shown by the MH-EWS platform. The left panel shows the hazards that are 
forecasted by the MH-EWS, such as flood, fires, storm surge, heatwaves, 
droughts. 

 
b) What purposes the tools/algorithms/products have been used 
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The drought forecasting algorithms was encapsulated in the MH-EWS since 
September 2017. This system has been tested to predict the 2018 pan-
European droughts. All drought forecasting products using different 
standardized indices produce similar drought pattern in Europe, e.g. the 
extreme drought in northern and central Europe in July 2018 has been 
forecasted 3 months ahead (Sutanto et al., 2019a). 
We also tested the drought products at the pilot site scale in Catalonia (Spain) 
together with the Catalonian Water Agency (ACA). The forecasts of 
meteorological drought (the SPI-12) were compared with the SPI maps based 
on observed precipitation from the Catalonia Meteorological Agency 
(MeteoCat). For example, cases for dry conditions (February 2018) and wet 
conditions (December 2018) showed that the forecasts issued 3 months before 
are in agreement with the observed SPI-12. 
Additionally, we are working closely with ACA and HYDS to forecast reservoir 
volumes at Llobregat River and Ter River by using the SPI-3 (see also D6.5). 
This work is still ongoing and an example of using the forecasted SPI-3 to 
predict the Llobregat reservoir volume is given in Figure 66. It shows that the 
reservoir volume can be predicted well in advance for short lead times. For 
longer lead-time the algorithm still requires improvement. 
 

 
Figure 66: Forecasting the Llobregat reservoir volume using SPI-3 in December 
2018 (dotted line), in January 2019 (dashed line), and in February 2019 (long 
dashed line) with a lead-time of 7 months ahead. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Drought forecast products (standardized drought indices) are implemented at 
the pan-European scale. The most important factors now are the continuity of 
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the data (ECMWF-SEAS5, EFAS forecasts, and proxy), no updates of 
hydrometeorological platforms that changes, for example new spatial coverage. 
Forecasted standardized drought indices are also available at the local scale 
down to 5 km scale. Not many users have sufficient knowledge on the drought 
forecasts, such ACA. Thus, training on drought forecasts is necessary for a new 
user to support use of the drought products and to finetune this to the needs. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
There is no deviation of final algorithms that forecast standardized drought 
indices relative to what has been promised. On the other hand, the final version 
has a wider European spatial coverage than was planned at the start of 
ANYWHERE . 
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Figure 67: Examples of drought forecast products for different hydrological 
variables. a) Drought onset for the longest soil moisture drought event, b) 
drought termination for the longest soil moisture drought event, c) drought 
duration in the runoff, d) average cumulative deviation from the threshold in 
groundwater, e) drought duration in discharge, and f) cumulative drought deficit 
volume in discharge. All data hold for the median of the 51 ensemble members 
within the forecast period of 7 months and obtained from the forecast from 2nd 
May 2018. 
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Threshold-based drought indices (WUR) 

In general, the algorithms that forecast the threshold-based drought indices through 
the ANYWHERE MH-EWS had the same development level as the standardized indices 
(see above). 

 

a) Development stage (TRL) of the tools/algorithms/products 
The drought forecasting algorithms using the threshold-based indices have 
been tested to predict the 2018 pan-European droughts. The onset and 
termination of the longest drought (day number) within the forecast period 
(7 months), the total drought duration (in days rather than in months as for the 
standardized indices), the deficit volume (for fluxes), and average cumulative 
deviation from threshold (for state variables) on daily basis for 7 months are 
forecasted for precipitation, soil moisture, runoff, and groundwater (e.g. Fig. 67). 
The extreme drought in northern and central Europe in 2018 has been 
forecasted 3 months ahead (Sutanto et al. 2019a). The drought algorithms using 
the threshold-based drought indices have been tested at pan-European scale 
and are in pre-operational state. The test results demonstrate that the system 
could forecast droughts relatively well months in advance. Similar to the 
standardized drought indices, the development stage could be classified as 
TRL=8 (System complete and qualified). 

b) What purposes the tools/algorithms/products have been used 
The drought forecasting algorithms that forecast threshold-based indices have 
been tested (see point a). At the pilot site scale we tested operationalizability in 
Catalonia in close cooperation with ACA and HYDS. Skill in hydrological 
forecasting is presented by Van Hateren et al. (2019). 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Drought forecast products (threshold-based drought indices) need the same 
data and resources at the pan-European scale and the local scale, as described 
under standardized drought indices. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No deviations were reported. Threshold-based drought indices are forecasted 
for a wider European spatial coverage than was planned at the start of 
ANYWHERE . 

 

Areal drought indices (WUR) 

Area drought indices have not been tested in ANYWHERE by end-users. However, 
developers have verified at the pan-European scale. 

a) Development stage (TRL) of the tools/algorithms/products 
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The areal drought forecasting products have been tested to predict the 2018 
pan-European droughts, which are time series of the average percentage area 
in drought for each month over the 7-month forecast period (Sutanto et al., 
2019a). The development stage of the areal drought indices is not as high as 
the standardized and threshold-based drought indices, and it is classified 
TRL=5 (Technology validated in relevant environment). 

b) What purposes the tools/algorithms/products have been used 
The algorithms that forecast areal drought indices have been used to calculate 
the percentage area in drought and the statistical summary information of the 
drought duration and deficit volume in precipitation of the area in drought across 
Europe. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
Same as point c for the standardized and threshold based indices, see above. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 

e) No deviations were reported. Areal drought indices are forecasted for a larger 
European domain than was planned at the start of ANYWHERE . 

 

6.3.6 Convective storms, severe winds and heavy snowfall 
Continuous development work is performed on all FMI products presented in this 
section. New versions of the products are regularly produced. 

Detection and forecasting convective cells (FMI)17 

a) Development stage (TRL) of the tools/algorithms/products 
The object-oriented convective storm product is still very early stage of 
development, and it could be characterized with TRL 3 (Experimental proof of 
concept).  

 

Snow-load and gust algorithms (FMI) 

a) Development stage (TRL) of the tools/algorithms/products 
The Finnish Meteorological Institute (FMI) provides forecasts of snow load 
accumulation on canopy and transmission lines based on an experimental 
model taking as input the NWP data of relative humidity, temperature, wind 
speed and precipitation estimate. The model is calculated in the FMI operational 
production line, therefore is interpret to have reached the development stage of 
TRL 9 (system proven in operational environment). The validation of the snow 

                                            
17 Point b) What purposes the tools/algorithms/products have been used, point c) What is needed to 
implement it, and point d) Deviation of final tool/algorithm relative to originally promised (DoA) are not 
reported because algorithm development is still in early phase. 
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load is continuously performed by the forecasting meteorologists and based on 
this analysis the products are developed further. 

b) What purposes the tools/algorithms/products have been used 
It is used by the forecasting meteorologists to estimate the possible impacts of 
snow load for electricity distribution and the building roofs. It is provided to the 
end-users upon request through FMI-Ilmanet service and for A4EU platform. In 
ANYWHERE this product is used for the A4FINN impact tool as one of the 
parameters that create the weather-related combined impact level for the 
ISTIKE pilot site. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The snowfall product is developed to Finnish conditions, and as it is based upon 
experimental parametrization, therefore the feasibility to other location is limited 
and would need scientific resources to calibrate parameters. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE , June 2016) 
No changes relative to the DoA. 

 

Probability of precipitation type (FMI) 

A first precipitation type product is provided by FMI. Operational aspects are given 
here. 

a) Development stage (TRL) of the tools/algorithms/products 
The probability of precipitation type product is in the FMI operational production 
line, therefore the TRL level is 9 system proven in operational environment). As 
stated in Section 2.1.2 the NWP products provided by FMI are based on already 
operational models of HIRLAM, HARMONIE-AROME and the product of 
precipitation type utilizes also the synoptic scale from GFS and ECMWF. 

b) What purposes the tools/algorithms/products have been used 
The product is originally developed as part of the SESAR TopLink project 
targeting for aviation applications. Currently it is used by the forecasters as a 
tool to estimate the precipitation type, in research it has been applied with radar 
data to give precipitation type estimate to regions, which do not have dual-
polarization radar data coverage. It is provided to the end-users upon request 
through FMI-Ilmanet service and for A4EU platform. In ANYWHERE this product 
is used for the A4FINN impact tool as one of the parameters that create the 
weather-related combined impact level for the ISTIKE pilot site. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
It is a pan-European product. 

d) deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE, June 2016) 
This product was developed after the DoA was written, and has been added to 
the ANYWHERE-catalogue, when it was needed in the A4FINN development. 
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Probability of precipitation type (ECMWF) 

A second precipitation type product is provided by ECMWF. Operational aspects are 
provided below. 

a) Development stage (TRL) of the tools/algorithms/products 
The two new ECMWF precipitation type products that have been developed in 
the framework of ANYWHERE project have been operational since end of 2017. 
These products are closely connected to the ECMWF-IFS and recalibration is 
part of the update of ECMWF-IFS (Section 4.5.3). The development stage is 
classed as TRL=9 (Actual system proven in operational environment). 

b) What purposes the tools/algorithms/products have been used 
Both the probability of precipitation type and the most probable precipitation 
have been forecasted at the pan-European scale. 

c) What is needed (data/resources) to implement it (at local and pan-European 
scale) 
The algorithm to forecast precipitation type is run by the ECMWF and needs 
input from ECMWF-IFS. Specialized knowledge and experience is required run 
the algorithm. Downscaling of output is needed for local applications. 

d) Deviation of final tool/algorithm relative to originally promised (DoA at start of 
ANYWHERE, June 2016) 
Precipitation type products have not suffered from any change since they 
started to be operational in 2017. A calibration process is developed to adjust 
the minimum precipitation rate thresholds considered for each precipitation 
type, however the values obtained from this calibration had not changed until 
now. 
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7 Moving from hazard to impacts 

Work Package 2 (WP2) aimed to establish algorithms/tools to nowcast and forecast 
natural hazards and the resulting impacts. This requires a translation from hazards into 
impacts. In the conventional approach, knowledge on exposure and vulnerability is 
needed for the translation. This knowledge is very specific, and commonly people think 
that appropriate impact assessments only can be done at local scale where detailed 
small-scale information is available. Local impact assessment is done in close 
cooperation between end-users, who know and provide relevant information on 
exposure and vulnerability, and forecasters of natural hazards. This does not mean 
that there are no large-scale assessments of potential impacts (e.g. Carrão et al., 
2017), however, these are very explorative. A comprehensive overview of how hazards 
are to be translated into impacts, incl. how hazards, exposure, vulnerability, resilience, 
adaptation risk and impacts are connected, is provided by the MOVE framework 
(Methods for the Improvement of Vulnerability Assessment in Europe, Birkmann et al, 
2013). In an earlier ANYWHERE deliverable, Ciavola et al. (2017) concluded that 
adequate information on exposure and vulnerability is not available at the pan-
European scale, that is, the WP2 scale. They state that within the ANYWHERE 
framework the forecasts generated with the WP2 algorithms/tools via the MH-EWS 
(WP3) need to be linked with local knowledge in the Pilot Sites (WP6). Ciavola et al. 
(2017) provide for each hazard a number of foreseen applications of the algorithms to 
assess impacts. Nonetheless, we address in this chapter some recent developments 
within ANYWHERE that elaborated impact assessment/forecasting at scales beyond the 
Pilot Sites, i.e. the pan-European scale and regional scale. 

First, this chapter presents a summary of existing datasets with European coverage 
that can be used to characterize the vulnerability and exposure. In the context of 
ANYWHERE , the interest of these datasets is double, in their use: (i) in impact models 
run at Europe scale; and (ii) as standard datasets that can be used in impact models, 
especially in areas where no higher-resolution or higher-accuracy datasets are 
available. Then, the chapter presents a few examples that apply the conventional 
approach by overlaying hazard, exposure and vulnerability (bottom-up approach). Next 
we present an alternative approach that starts with the impacts (top-down approach). 
We conclude with impact assessment at the regional scale. 

 

7.1 Pan-European vulnerability information 

To demonstrate the European perspective of the impact forecasting algorithms/tools 
of the ANYWHERE project, several vulnerability datasets with pan-European coverage 
have been gathered from various sources. In combination with hazard forecasts, this 
information facilitates the estimation of socio-economic impacts of weather-induced 
events across Europe. The datasets can directly be used for the development of pan-
European impact forecasts, or for transferring regional impact models to new spatial 
domains (where regional vulnerability data is not available). 
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Besides of their use for impact forecasting, it has been found valuable to make these 
datasets available as vulnerability layers in the A4EU platform, which allows displaying 
together with weather and hazard forecasts. 

The datasets have been integrated in ANYWHERE in collaboration with the EU Joint 
Research Centre (mainly during a secondment of a researcher from UPC-CRAHI at 
JRC). Some of them have been generated from existing datasets available at JRC, 
and information from OpenStreetMaps has also been integrated. 

7.1.1 Population density maps 
For estimating the number of people potentially affected by a weather event, it can be 
useful to overlay the forecasts of the hazard with the population density map in the 
affected area. The project has identified two sources with European coverage: 

• The Global Human Settlement Layer (GHSL; Freire et al., 2016) is a static 
population density map showing the number of people per hectare with a 
resolution of 100 m. The map was created based on the Eurostat 2011 
censuses, Corine Land Cover 2006 (refined), and the European Settlement 
Map 2016. The coverage includes all EU countries, plus Albania, Andorra, 
Bosnia and Herzegovina, Iceland, Kosovo, Liechtenstein, North Macedonia, 
Monaco, Montenegro, Norway, San Marino, Serbia, and Switzerland (Fig. 68). 

• The population density maps recently developed in the framework of the H2020 
ENACT project18. These maps have a lower resolution (1 km) than the GHSL 
static population density map described above, but they account for day/night 
dynamics (e.g. due to commuting) and monthly variations (e.g. due to tourism). 
For each month of the year, two population density maps are provided (one for 
daytime and one for night-time; i.e. 24 maps in total). The maps are not yet 
officially published and will meanwhile not be displayed on the A4EU platform. 
However, we have received permission to use them for the development of 
impact models within the ANYWHERE project. 

                                            
18 https://ghsl.jrc.ec.europa.eu/enact.php. 
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Figure 68: a) GHSL static population density map over Europe (spatial 
resolution: 100 m). b) Detail of the GHSL population density map over Slovakia; 
the symbols correspond to the Pan-European critical infrastructure database. c) 
Same as panel b, but zoomed to Bratislava (Slovakia). 

7.1.2 Population exposure to specific hazards 
For a refined perspective of the population potentially at risk, the Joint Research Centre 
(JRC) estimated the number of people exposed to specific weather-related hazards, 
which is displayed in the Disaster Risk Management Knowledge Centre Risk Data 
Hub19. This information was generated by combining the GHSL static population 
density map (with a spatial resolution 100 m; see Section 7.1.1) with the areas 
potentially affected by the individual hazards. The resulting estimates of exposed 
population are available at the resolution of administrative regions (NUTS), covering 
all EU countries, plus Norway and Switzerland (see Fig. 69 for an example). The 
resulting layers are available for river floods, coastal floods, landslides, and forest fires. 

River floods: The population numbers potentially affected by river floods were 
estimated by overlaying the population density map with the JRC EFAS Flood hazards 
Map20 of return periods of 10, 50, 100, and 500 years, covering all European rivers 

                                            
19 https://drmkc.jrc.ec.europa.eu/risk-data-hub/risks/data_extraction/. 

20https://data.europa.eu/euodp/en/data/dataset/7dcb3d9dd9b598f2905611d5e22c5ebe69505278. 
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with an upstream drainage area larger than 500 km2. One limitation is that defence 
structures such as dykes were not taken into account. 

Coastal floods: Analogously to the method applied for river floods, the population 
numbers potentially affected by coastal flooding were estimated by overlaying the 
population density map with coastal flood hazard maps (derived with the LISCoAsT 
model; Vousdoukas et al., 201721) corresponding to return periods of 10, 50, 100, and 
500 years. Also here, defence structures were not considered, resulting in high 
numbers of potentially exposed population also in locations with high protection 
standards (e.g. The Netherlands). 

Landslides: The population numbers potentially affected by landslides were estimated 
by combining the ELSUS landslide susceptibility layer (Wilde et al., 201822 with daily 
rainfall maps of different return periods (2, 5, 10, 20, 50, 100, 200, 500 years) from the 
Global Precipitation Climatology Centre (GPCC), and then overlaying the resulting 
landslide footprints with the population density map. 

Forest fires: The estimates of population potentially affected by forest fires (Fig. 69) 
are based on three steps: First, the Woodland-Urban-Interfaces (WUI) were derived 
from Corine Land Cover 2006. Second, the WUI were filtered for areas within a 
Euclidian distance of less than 10 km from the burnt areas recorded by the European 
Forest Fire Information System (EFFIS) between 2006-2017, to identify the WUI with 
high potential for forest fires. Third, the resulting WUI with high fire potential have been 
overlaid with the population density map. 

                                            
21 https://data.jrc.ec.europa.eu/dataset/jrc-liscoast-10009. 

22 https://esdac.jrc.ec.europa.eu/content/european-landslide-susceptibility-map-elsus-v2. 
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Figure 69: Population potentially exposed to forest fires, aggregated at the level 
of NUTS regions. 

7.1.3 Critical infrastructures 
As additional vulnerability information, the locations of critical infrastructures have been 
collected and harmonised at pan-European scale. The resulting layers include 
education and health facilities (Fig. 68b and 68c), and the primary road network. 

Education facilities: A database containing the locations of education facilities across 
Europe has been extracted from a OpenStreetMaps dataset23. The database includes 
kindergartens, schools, and universities. While the coverage is very high in some 
countries (e.g. Germany), the data is less comprehensive in others (e.g. in Slovakia, 
see Fig. 68b). 

Health facilities: A pan-European database of hospitals has been generated based 
on data from Healthsites.io24, an open-source mapping project of health facilities at 
global scale that is based on OpenStreetMaps and public participation. The data have 
been filtered for the hospitals and clinics to include only the most important facilities. 
                                            
23 https://mapcruzin.com/free-europe-arcgis-maps-shapefiles.htm. 

24 https://healthsites.io/. 
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In a few random test locations, the data appeared to be very comprehensive (we have 
not found any missing hospitals). For Bosnia and Herzegovina, Czech Republic, Faroe 
Islands and Northern Cyprus, the Healthsite.io data was not available and has been 
filled with data extracted from the same OpenStreetMaps dataset used for the 
education facilities. 

Road network: The primary road network across Europe has been extracted from 
OpenStreetMaps data25. The dataset has been filtered for the most important road 
types of the OpenStreetMaps classification: motorways, trunks, primary, secondary, 
and tertiary roads. The value of the road network dataset consists in its potential use 
in impact models (e.g. to automatically identify the roads affected by forecasted 
trajectories of forest fires), but it does not add much to the base maps from 
OpenStreetMaps already available in the A4EU platform, and, it will thus not be 
displayed. 

7.2 Impact forecasting at the European scale 

This section described examples of continental impact forecasting. Two approaches 
are explained, i.e. (i) the bottom-up approach that uses the natural hazard forecast 
maps and the pan-European vulnerability information (Section 7.1), and (ii) the top-
down approach that starts with the impacts. 

7.2.1 Bottom-up approach – Impact models 
To illustrate how the described vulnerability data (Section 7.1) can be employed to 
model the impacts of weather events at pan-European scale, a first exploratory study 
has been carried out following a bottom-up approach (i.e. combining hazard forecasts 
form the ANYWHERE catalogue with the vulnerability and exposure datasets to map the 
impacts at European scale. 

7.2.1.1 Air Quality impact on population 

The World Health Organization stated already many years ago the potential of 
combining air quality estimates with population density information to map the impacts 
on the health of the population (WHO, 1999). Following this idea, we have explored 
the possibility to forecast the impact of air quality on the population across Europe to 
illustrate the use of pan-European vulnerability datasets for simplified impact 
forecasting. 

The proposed approach uses the forecasts of particle concentrations [µg/m3] of five 
individual pollutants that are available in the ANYWHERE MH-EWS (originally provided 
by Copernicus26). To make these forecasts more interpretable for the end-users, the 

                                            
25 https://mapcruzin.com/free-europe-arcgis-maps-shapefiles.htm. 

26 http://www.regional.atmosphere.copernicus.eu. 
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European Air Quality Index (EAQI27) of the European Environment Agency has been 
employed. The EAQI defines concentration thresholds for each of the five pollutants to 
classify them in five air quality index levels (Table 11). In each location, the poorest 
index level of any of the five pollutants determines the overall air quality. An example 
of the resulting pan-European air quality forecast is shown in Figure 70. 

Table 11: Particle concentration thresholds for air quality pollutants (Source: European Environment 
Agency) 

Pollutant 

Index level 
(based on pollutant concentrations in µg/m3) 

Good Fair Moderate Poor Very poor 

Particles less than 2.5 µm (PM2.5) 0-10 10-20 20-25 25-50 > 50 

Particles less than 10 µm (PM10) 0-20 20-35 35-50 50-100 > 100 

Nitrogen dioxide (NO2) 0-40 40-100 100-200 200-400 > 400 

Ozone (O3) 0-80 80-120 120-180 180-240 > 240 

Sulphur dioxide (SO2) 0-100 100-200 200-350 350-500 > 500 

 

While poor air quality may have only limited consequences in areas with low population 
densities, the impacts can become very significant when more densely populated 
areas are affected. To take this consideration into account and estimate the air quality 
impact on population, the proposed approach combines the EAQI forecast with 
population density maps. For this task, we have selected the population density maps 
developed in the ENACT project (Section 7.1.1), which account for some of the 
dynamics that inherently affect population exposure. At each forecast time step, the 
population density map of the corresponding month and time of day is used. 

                                            
27 https://www.eea.europa.eu/themes/air/air-quality-index/index. 
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Figure 70: The European Air Quality Index (EAQI) forecast for 11 July 2019 at 
10:00 UTC. This product has been generated by selecting the poorest index level 
of any of the five pollutants of Table 11 in each location. 

The presented approach is based on an impact matrix combining the hazard as 
described by the EAQI forecasts (Fig. 70) and the vulnerability estimated by the 
population density. With this aim, the population density values have been classified 
into three population exposure classes: low (10 – 999 people/km2), medium (1000 – 
4999 people/km2), and high (5000 and more people/km2). These thresholds are 
arbitrary chosen and were manually calibrated by testing a variety of threshold values 
and analysing the resulting population exposure maps in various locations across 
Europe. The combination of EAQI and population density is done in each cell (with a 
resolution of 1 km) by means of the impact matrix of Figure 71, resulting in three impact 
levels: low (yellow), medium (orange) and high (red). It has been assumed that only 
moderate, poor, and very poor air quality situations cause relevant impacts; in locations 
with good or fair air quality, no significant impacts are expected. An example of the 
resulting impact map, zoomed to the Peloponnese (Greece), is shown in Figure 72. 
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Figure 71: The Impact matrix that estimates the air quality impact on population 
by combining in each cell the European Air Quality Index (EAQI, Fig. 70) with 
the population exposure class. 

 
Figure 72: Map of air quality impact on population in the Peloponnese (Greece) 
on 11 July 2019 10:00 UTC (corresponding to the situation in Fig. 70). 
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When monitoring the air quality impact forecast with a resolution of 1 km (Fig. 72) at 
European scale, it can be difficult to identify the locations with forecasted impacts. To 
point out more clearly the potentially affected areas, the estimated impacts can be 
aggregated over the administrative regions (NUTS). By overlaying the EAQI forecast 
(Fig. 70) and the population density map, the total population numbers affected by 
moderate (Nmoderate), poor (Npoor), and very poor (Nverypoor) air quality are determined for 
each region. These population numbers are then used to compute the impact index Inut 
[people/km2] for the region: 

'()* =
(1 ∙ /012345*3) + 82 ∙ /:114; + 83 ∙ /=34>:114;

?@AB()*
 

where Areanut is the surface area of the region. The reasoning behind the calculation 
of Inut is to give higher weight to the population affected by poorer air quality levels. To 
determine an impact level (low, medium, high) for the region, Inut is compared to 
thresholds that are based on Mdndens, the median of population densities of all NUTS 
regions (Mdndens = 82.9 people/km2; see Table 12). An example of the resulting air 
quality impact map is shown in Figure 73. It can be observed that the Peloponnese 
(Greece) shows a low impact level, since it has a comparably low population density 
(33.8 people/km2) and only a small share of the population is affected by moderate or 
poor air quality (Fig. 72), which results in a low impact index of Inut = 18.6 people/km2. 
In contrast, the more densely populated island of Crete (84.0 people/km2) is fully 
affected by poor air quality (Fig. 70), which results in an impact index of Inut = 168.0 
people/km2 and thus in a high impact level (Fig. 73). 

Table 12: Threshold definitions to determine the impact levels in the NUTS regions, based on the 
impact index (Inut) and the median of population densities of all NUTS regions (Mdndens) 

Impact level none low  medium high 

Thresholds Inut = 0 0 < Inut � Mdndens Mdndens < Inut � (2 × Mdndens) (2 × Mdndens) < Inut  

Threshold 
values 

Inut = 0 0 < Inut � 82.9 
people/km2 

82.9 people/km2 < Inut  

� 165.8 people/km2 
165.8 people/km2 < Inut 

 

It should be mentioned that the proposed approach aims at providing a coherent pan-
European perspective and making impacts comparable across borders. This pan-
European perspective may not be very useful for local decisions. For instance, in 
densely populated regions (e.g. Paris), the estimated impact level may be high already 
for moderate air quality. In the same line of thought, the impact model will under no 
circumstances compute a high impact level in regions with very low population 
densities (e.g. Iceland). 
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Figure 73: Air quality impact on population at the level of NUTS regions on 11 
July 2019 1000UTC (corresponding to the situation in Figures 3 and 5). 

7.2.1.2 Heatwave impact on population 

A similar approach has been designed to estimate the impact of heatwaves on 
population at pan-European scale. As a base for defining the heatwave hazard, the 
Universal Thermal Climate Index (UTCI; see e.g. Di Napoli et al., 2018) has been used. 
The UTCI employs a multi-node human heat balance model to estimate the heat stress 
to the human body due to meteorological conditions. One of the UTCI products 
provided in the A4EU platform is a pan-European map showing the probability 
(PUTCI>32) of exceeding a UTCI value of 32°C, a threshold above which heatwave-
related death counts increase significantly. This probabilistic forecasting product has 
been used as a base for the hazard component in the proposed heatwave impact 
model (see Figure 74 for an example forecast of a heatwave that affected large parts 
of Europe in June 2019. 

Peloponnese

Crete
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Figure 74: Probabilistic forecast of UTCI exceeding 32°C on 28 June 2019 18:00 
UTC (lead time 18 h). 

The concept of the heatwave impact approach is very similar to the one described in 
Section 7.2.1.1 (the main difference is the definition of the hazard classes): the 
heatwave hazard classes have been defined based on PUTCI>32, and the thresholds 
defining the classes low, medium and high are for values of PUTCI>32 of 1%, 50% and 
75% (as indicated in the legend of Fig. 74). 

For estimating the heatwave impact on population at 1 km resolution, the model 
applies an impact matrix (such as in Fig. 71, but with the heatwave hazard classes 
used here). Similarly, an additional output is computed to show the heatwave impact 
at regional level. Again, this is done by first counting for each NUTS region the total 
population numbers affected by the three hazard classes, then using them to calculate 
Inut, and finally determining the impact level according to Table 12. The heatwave 
impact forecast at regional level, corresponding to the situation of Figure 74, is shown 
in Figure 75. The Figures 74 and 75 demonstrate the added value of the impact model: 
In some regions that are affected by a high heatwave hazard, the heatwave impact is 
only low to medium, since the regions are sparsely populated (see e.g. some rural 
areas in central Spain). On the other hand, some regions affected by medium 
heatwave hazard show a high impact due to high population densities (e.g. central 
Germany).  

Probability	of	UTCI	>	32ºC
1	-	50%
50	-	75%
75	-	100%
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Figure 75: Heatwave impact forecast at the level of NUTS regions, 
corresponding to the situation in Figure 74. 

7.2.2 Top-down approach 
A system has been developed that potentially forecasts drought impacts across 
Europe a few months ahead (Sutanto et al., 2019c). This system provides drought 
impact forecasts that enable to take measures in time to manage the consequences 
of droughts, for instance for shipping, agriculture and nature. The study uses a so-
called top-down approach implying that this method straight forwards starts with 
(reported) impacts and tries to link these to environmental factors (i.e. drought indices). 
The top-down approach deviates from the approach described in Section 7.2.1, which 
uses the conventional bottom-up approach that tries to find impacts through overlaying 
risk layers of hazard, exposure and vulnerability. 

In the above-mentioned pan-European study, it was found that drought impacts, 
instead of drought hazards, can be forecasted with substantial skill up to 2-4 months 
ahead and in some cases even longer. They demonstrate this potentially pan-
European approach by forecasting drought impacts, among others, on water-born 
transport, public water supply, water quality and ecosystems in German NUTS regions. 
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Figure 76: Re-forecasted likelihood of drought impacts and observed drought 
impact on a specific impact group in the period 2002-2010 for the NUTS region 
Brandenburg (BB), Germany. 

The study used the European Drought Impact Inventory (EDII, Stahl et al., 2016) that 
includes thousands of historic drought impact reports for several sectors. Machine-
learning techniques (Random Forest, Logistic Regression) were applied to connect the 
impacts in a certain month in the past to drought indices from that time, e.g. the 
Standardized Precipitation Index (SPI), the Standardized Precipitation-Evaporation 
Index (SPEI), and the Standardized Runoff Index (SRI). In this way, a relation (drought 
impact function) between the impact in a certain sector and drought indices was 
obtained for each European region that has sufficient impact reports in the EDII. In the 
next step, historic seasonal forecasts of the runoff, evaporation and precipitation (up 
to 7 months ahead), which are available in the archive of the European Centre for 
Medium-Range Weather Forecasts (ECMWF), have been used to calculate drought 
indices (e.g. SPI, SPEI, SRI) for each month in the period 2002-2010. Next, the above-
mentioned drought impact functions and the historic seasonal forecasts (i.e. re-
forecasts) of monthly drought indices were applied to forecast drought impacts in 
retrospective for selected regions across Europe (in this study: Germany), for specific 
sectors and for each month in the period 2002-2010. Eventually, the drought impact 
forecasts, up to 7 months ahead, were compared with the observed impacts for these 
regions. Figure 76 provides an example for a specific German NUTS-1 region for the 
period 2002-2010, that includes the major 2003 and 2006 drought. The grey bar shows 
observed impacts on a certain impact category (in this case water quality and 
ecosystems), which occurred in 2003 and 2006. The blue lines shows the re-
forecasted Likelihood of drought Impact Occurrence (LIO), that are the median of the 
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ensembles for lead times of 1 to 7 month and for every months when the new forecast 
is issued. There are clear peaks in the reforecasts in 2003 and 2006. A more detailed 
analysis of the months preceding the 2003 and 2006 drought events (red boxes) led 
to the conclusion that drought impacts forecasts have substantial skill, up to 2-4 
months ahead and in some cases even longer (Sutanto et al., 2019c). Ensembles can 
be used to consider uncertainty in drought impact forecasts. 

7.3 Impact forecasting at regional scale 

The flash flood hazard estimates obtained by the FF-EWS (Section 3.1.2) can provide 
valuable decision support at regional scale and high resolution. From such hazard 
estimates, emergency managers need to estimate the potentially flooded areas and 
resulting socio-economic effects, to coordinate flood response actions such as 
warnings or evacuations. In practice, this is commonly done non-automatically, based 
on the knowledge and experience of the person in charge, which increases the 
potential for suboptimal decisions and requires time, typically scarce during flash 
floods. To complement the FF-EWS hazard estimates and nowcasts in this respect, 
the method ReAFFIRM (Real-time Assessment of Flash Flood Impacts: a Regional 
high-resolution Method) has been developed and presented in a recently submitted 
paper (Ritter et al., 2019). 

As shown in Figure 77, from the hazard estimates obtained by the FF-EWS along the 
drainage network, ReAFFIRM estimates the flood extent and depths at very high 
resolution based on the flood maps produced in the framework of the EU Floods 
Directive (European Commission, 2007). Finally, the flood depths are combined with 
several socio-economic exposure and vulnerability layers to quantitatively assess the 
impacts in three categories (namely, population present in the flooded areas, economic 
losses, and affected critical infrastructures). Figure 78 presents an example with the 
flood extent and estimated impacts during the flood that affected some parts of the city 
of Rubí (Spain) during the event of 15-16 October 2018.  

The performance of ReAFFIRM has been evaluated on a number of flash flood events 
in Catalonia (Spain), and evaluated by comparison against the available information 
about the effects of the floods reported in newspaper articles, insurance claims, 112 
emergency calls, and social media postings. The results show that ReAFFIRM is able 
to identify the locations of the most significant impacts (e.g. where casualties 
occurred), whereas some less severely affected locations were missed (in particular 
for events of return periods smaller than 10 years). The results show that, for the 
studied cases, the estimated number of people and critical infrastructures in the 
flooded areas were reasonable, while the economic losses were systematically 
overestimated. 
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Figure 77: Concept of the method ReAFFIRM transforming the hazard estimates 
of FF-EWS into FF impacts.  

The different components of ReAFFIRM are affected by several sources of uncertainty. 
In addition to the uncertainties that affect the FF-EWS hazard estimates and nowcasts, 
the translation from hazard into impacts is affected by different sources of uncertainty, 
among which the accuracy of the flood maps and the representativeness of the depth-
damage curves to estimate the economic effects seem to be the most critical. 

ReAFFIRM has been developed aiming at a high practical value: the computational 
requirements to apply it at regional scale are moderate, and the method can be 
relatively easily transferred to other regions: Once the FF-EWS system is 
implemented, the application of ReAFFIRM requires flood maps and exposure and 
vulnerability information that are nowadays publicly available throughout Europe. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 147  

 

 
Figure 78: Left: Results obtained with ReAFFIRM summarised at municipality 
level over Catalonia for the event of 15-16 October 2018. Middle: Simulated flood 
extent in the city of Rubí. At this location, the FF-EWS system estimated return 
periods between 10 and 25 years. Right: Simulated economic losses in the 
northern part of Rubí (the location is shown in the middle panel). 

The assessment of the impact of flash floods on population by using ReAFFIRM 
follows a bottom-up approach (Section 7.2.1). A top-down approach, such as in 
Section 7.2.2 is applied at the national scale (Finland) to connect snow load to calls for 
emergency tasks of civil protection authorities (Section 3.6.2). 
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8 Concluding remarks 

Within ANYWHERE, no common methodology to assess uncertainty and robustness 
could be developed. Reasons for this were among others: (i) the different concepts to 
forecast different natural hazards, (ii) the data requirements (historic period, spatial 
coverage, type of data), and (iii) state of development of algorithms/tools. However, it 
came out that there was similarity in the design of the uncertainty assessment for 
almost all hazards, that is, comparing re-forecasts with observations, or a proxy for 
observations, using re-analysis data or simulation output. Clearly for some hazards 
only a few years of observed (or proxy) data were available. This means that the 
uncertainty and robustness assessment had limitations. In addition, not always re-
forecast data were available. 

 

Uncertainty 

Most knowledge on uncertainty in products from hydrometeorological forecast 
platforms was already available at the start of ANYWHERE. In most cases, knowledge 
has improved or existing knowledge has been confirmed in the update cycles that are 
part of operational routines. Updating and regular systematic reporting is a continuous 
activity of hydrometeorological organizations. Specific uncertainty assessment of 
hydrometeorological forecast platforms was beyond ANYWHERE activities. The same 
holds for pan-European platforms that already existed prior to ANYWHERE: (i) European 
Floods Alert System (EFAS), European Fire Forecasting System and Global ECMWF 
Fire Forecasting model (EFFIS-GEFF), and European Drought Observatory (EDO). 
The current state of uncertainty of these platforms is briefly described based on the 
regular reporting. For instance, EFAS performs generally better in the northern part of 
Europe than in the south. The skill in winter is normally higher than in summer, etc... 

During the second part of the ANYWHERE project, the hydrological forecast platform 
(EFAS) has gone through a major change, as the domain was increased, the projection 
changed, the hydrological model LISFLOOD was upgraded, and the parameters were 
recalibrated. These changes also affected all algorithms/tools that were reliant on 
EFAS, i.e. floods and drought, which required revision. This might affect uncertainty 
assessments. 

Bias correction and downscaling of outcome from global weather forecasting platforms 
in mountainous regions substantially improves heavy precipitation forecasts in terms 
of spatial resolution and lead times (2-5 days ahead). 

Algorithms that forecast flash flood hazard using a calibrated rainfall-runoff model 
perform slightly better than those only based on the rainfall accumulated in the 
upstream catchment (the basin-aggregated rainfall). In regions where insufficient river 
flow data are available to adequately calibrate the rainfall-runoff model, which 
frequently happens, the basin-aggregated rainfall is proved to be a good choice for 
events with frequencies lower than 10-year return period (see Corral et al., 2019). 
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Testing of landslide forecasting algorithms/tools showed that generally these are able 
to issue warnings for the most significant reported landslide events. Testing, however, 
is hampered that only those events that cause damage to infrastructure, buildings or 
roads are reported. 

The pan-European Storm Surge Forecasting System was found to have satisfactory 
skills to predict tidal, surge and total water levels by testing it against measurements 
from 208 tidal gauge stations along the European coastline, and using two atmospheric 
forcing datasets. The regional storm model shows good performance for extreme 
storm surge. Wave predictions were used for evaluation, so far. The local inundation 
model showed good performance in the Pilot Site Stavanger. 

The Universal Thermal Climate Index (UTCI) that is applied to assess heatwaves 
apparated to be sensitive to all input data, i.e. forecasted weather variables (wind 
speed, relative humidity, temperature, solar radiation). Evidence is provided that the 
UTCI can be used to forecast time periods when heat-related excess mortality is 
observed. 

Air quality is forecasted using seven chemical transport models that are coupled with 
ECMWF weather forecasts, which calls for reliable weather forecasts. Comparison of 
observed ozone, as one of the gasses in the seven air quality models, against 
simulation data learnt that the ensemble of all models performs generally better than 
individual models. For this reason, it has been decided to use the ensemble forecast 
median of ozone and other pollutants’ concentrations in ANYWHERE. 
The Fire Weather Index (FWI) that is included in EFFIS-GEFF, is one of the most 
common indices to forecast wildfires. FWI quantifies how dangerous fires could be 
assuming an ignition occurred and knowing weather conditions from weather 
forecasting platforms. Comparison of FWI derived from stations with observed weather 
data and forecasted data (ECMWF-IFS) shows that skill exists until day 6, and in 
selected cases predictive skills can be achievable even at day 10. An analysis of the 
fatal Pedrógão Grande fire (Portugal) in June 2017 exposes that most of the region 
was classified at very high danger 10 days ahead. 

Uncertainty in seasonal drought forecasting is addressed by using the ensemble 
forecasted time series of hydrometeorological variables. For each drought product not 
only the forecasted median is presented, but also the percentiles (10th - 90th). Drought 
forecasting either using standardized drought indices or threshold-based indices has 
acceptable skill up to 3-4 months, especially for longer accumulation periods of 
precipitation or runoff. Drought forecasts show the lowest uncertainty when they are 
done in winter, whereas forecasts issued in spring show the highest uncertainty. 

It is challenging for the convective cell algorithm to produce skilful nowcasts for 
convective cells beyond 30 min. In general, the lifetime of small convective cells is 
short, and their development is fast (growth or decay, splitting and merging) making 
the skill rather low beyond lead times of, for example, one hour. 
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A preliminary analysis of the uncertainty of the snow load model to forecast number of 
tasks for emergency services because of expected falling trees and associated power 
cuts still shows a low correlation to environmental parameters, i.e. high uncertainty. 
Likely, more factors need to be included in the model, such as more detailed tree 
characteristics. 

Analysis of the uncertainty of ECMWF and FMI algorithms to forecast different 
precipitation types show that both models forecast all precipitation types overall quite 
reliably, e.g. models give reliable and skillful probabilistic forecasts for rain and snow 
up to five days, and for sleet and freezing rain up to about 3 days. However, both 
models tend to slightly over-forecast the sleet. Uncertainty analysis of sleet and 
freezing rain could be improved because these rarely occurred in considered time 
series of observations. 

 

Robustness 

Whether weather forecast platforms, such as ECMWF IFS and IMF’s HIRLAM and 
HARMONIE-AROME, are robust models under a future climate, or not, is an intriguing 
question for the ANYWHERE platforms, because these provide the probabilistic input for 
almost all algorithms/tools that forecast natural hazards. Positive in this context is that 
the weather platforms are constantly updated and are therefore by default able to cope 
with new situations in light of changing physical properties in a future climate. The 
ECMWF-IFS is already today very close to a full earth system model and, has been 
shown to capture observed climate change well. In fact, it is used as both a climate 
change model within the EC-EARTH consortium and as a reference climate model for 
the past using the reanalysis ERA5 being the latest version. Clearly, running the 
weather forecast platforms under a series of new climates was not feasible in 
ANYWHERE.  
A high robustness of the storm surge model under future climate is expected, hence 
no additional changes in model parameterization are anticipated. Nevertheless, there 
are several “external” factors that can contribute to reduce robustness of forecasting 
storm surge levels and waves: (i) uncertainty in projections of sea level increase, 
(ii) quality of wave predictions, particularly relevant for semi-enclosed basins with 
shallow water areas (e.g. North Sea, Baltic Sea and/or Northern Adriatic Sea), and (iii) 
changes in precipitation and river discharge that may affect coastal hydrodynamics. 

Projections consistently agree on a higher heat stress into the future that continues the 
increase in heat stress observed during recent past decades. However, the UTCI 
cannot not be considered robust on the future climate, because: (i) bioclimatic indices 
rely on the current weather and the ability of its forecast, and (ii) bioclimatic indices 
suppose an ability to acclimatisation (i.e. the adaptation to climate) equal to the one 
nowadays observed in populations. Future acclimatisation is expected to be different 
from the current one and to decrease vulnerability to heat-related hazards. 



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 151  

 

Fire forecasts in future depend very much on predictions of temperature and 
precipitation under a future climate (see remarks on robustness of ECMWF-IFS 
above). However, also non-climatic factors affect fire and are difficult to predict in the 
future. For example, fire forecasts are highly sensitive to the state of vegetation 
(i.e. fuel). If ANYWHERE were to provide forecasts of wildfires under future climate, the 
vegetation factor certainly needed to be included (currently omitted in EFFIS-GEFF). 

Robustness of drought forecasts under a future climate firstly depends on the 
robustness of the seasonal hydrometeorological forecasts, which drive the drought 
algorithms (see remarks on robustness of ECMWF-IFS above). The model structure 
of climate models (in ANYWHERE: ECMWF and FMI platforms) also affects robustness 
of forecasts, as shown through an intercomparison of the Standardized Precipitation 
Index (SPI) derived from observed precipitation against SPI obtained from tens of 
climate models. An analysis of the threshold to identify meteorological drought shows 
that the differences are in general rather small, irrespective of the selected threshold, 
which points at relatively high robustness of this model aspect. Robustness of drought 
algorithms has also been investigated by the spread in projected drought from different 
combinations of climate and hydrological models. The smaller the differences between 
the projected hydrological drought characteristics are, the higher the robustness is. 
Robust, i.e. consistent, drought projections were obtained for the Mediterranean 
region, and robustness is lower in the transition area between lower and higher 
latitudes in Europe. We learnt from a global scale study that the selection of the 
threshold, either fixed and obtained from the reference period (last decades of 20th C) 
or transient and adapting to the gradually changing hydrological regime in the 21st C, 
has a substantial effect on projected hydrological drought characteristics (about 35% 
difference in drought duration). 

No robustness analysis of FMI weather-type natural hazards (convective storms, snow 
load, precipitation type) has been performed yet. However, the statistical determination 
of storm severity is likely to alter and must be determined based on new statistical data. 
The FMI snow load model is an empirical algorithm with tuned parameters to the 
current climate. It is based on meteorological experience and observations, and hence 
robustness is hard to provide. The physical parametrization of the FMI precipitation 
type algorithm should be valid in future climate, but thresholds for the frequency of 
occurrences are expected to change. 

Whether the ECMWF precipitation type is robust in terms of future climate is a question 
as to the ECMWF IFS is a robust model for climate change impacts (see remarks on 
robustness of ECMWF-IFS above). The precipitation type products are designed in 
such a way that parameters are involved in the recalibration round for each IFS model 
cycle. This means that breakpoints could be re-defined for the different intensities of 
precipitation type, if the climate change requires it in the future. This will be a very 
useful approach in the future climate to optimize forecasting products whatever the 
climate conditions are. 

In summary, robustness assessment of algorithms/tools that forecast natural hazards 
under a future climate involves many different aspects, for example, (i) robustness of 
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platforms that forecast weather and hydrology under a future climate, which is input to 
natural hazard algorithms/tools, (ii) model structure of natural hazard algorithms/tools, 
(iii) parameters, and (iv) alert/emergency threshold. This is far-reaching and makes it 
challenging to provide a complete, up-to-date overview for a multi-hazard platform. 

 

Compound natural hazards 

Forecasting of compound weather events, incl. all the feedbacks in the system, is an 
inherent part of weather forecasting platforms, and hence these are implicitly included 
in the weather forecasts that drive possibly coinciding or cascading natural hazards. 

Hotspots of joint occurrence of storm surge and high river discharge have been 
identified along the European coast. At lower latitudes (Lat. < 60o) these two wet 
hazards happened about 3-5% of the time in the period 1990-2016 when a medium 
hazard level was considered. In northern Europe, i.e. central and northern 
Scandinavia, coincidence is lower. When we increase the hazard level, in particular 
the southwest and south coast of the Iberian Peninsula show up as hotspots. The same 
holds for the southwest of Italy and the English Channel. Robustness of findings would 
increase if river discharge would be available at higher temporal resolution, e.g. hourly 
or sub-hourly time scale. The same applies to a joint simulation of storm surge levels 
and river levels at river mouth (in the current version river discharge is not hampered 
by total water levels at the river mouth, i.e. unconstrained outflow). 

A methodology was developed to combine two hazards to identify areas prone to 
coinciding hazards. It was exemplified with, but it is not limited to, heat stress and fire 
danger. The methodology can be applied to analyse the extent of a past event and its 
spatial correlation with other observed variables (working in retrospect) or to make a 
prediction for the future (using forecast data). The combined heat and forest fire event 
that affected Europe in June 2017 was used as demonstration. 

Another study built upon the previous approach to analyse more generally compound 
dry hazards (heatwaves, fires and droughts) at the pan-European scale. Probability of 
occurrence of all three hazards happening at the same day was small (<1% of time, 
during summers in 1990-2018). Droughts dominate in coinciding and cascading dry 
hazard events and mainly control the number and duration of cascading events. In 
most cascading events a drought appears first and last as a single hazard, followed by 
the coinciding drought-wildfire. 

Pathways of wet cascading events have been identified by using three cases with 
extreme precipitation (amount or type) across Europe, which reveal various challenges 
for anticipation. It appears that the forecast of the triggering event is already related to 
uncertainty. Along the cascade with increasing time, complexity and uncertainty 
increases significantly. Interdependencies appear and key boundary conditions control 
the cascade at certain points. 
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Operationalizability 

The reported development stage of ANYWHERE platforms/algorithms/tools shows that 
half of the platforms/algorithms/tools have proven in an operational environment 
(TRL=9). Most of the others have a technology already demonstrated in a relevant 
environment (TRL=6). About 10% algorithms/tools is not validated in a relevant 
environment yet (TRL≤5). 

 

Impact assessment 

Large-scale impact forecasting has been explored. Pan-European maps showing 
population density and critical infrastructure (education and health facilities, road 
network) are described. These provide spatially-distributed vulnerability information 
across Europe. Overlaying these vulnerability layers with the spatially-distributed 
natural hazard across Europe (so-called bottom-up approach) gives maps with 
impacts. Examples are presented of spatially-distribution of number people exposed 
to number of hazards (river floods, coastal floods, landslides, forest fires).  

Two impact models using the bottom-up approach have been more elaborated: (i) air 
quality impact on population, and (ii) heatwave impact population. First index classes 
are defined for the natural hazard; when are hazard levels, for instance, good, poor). 
The same holds for the population density; when is density low, high. Then an impact 
matrix is developed that combines the index classes of the hazard and the population 
density and that defines the impact classes (e.g. low, high). Next the forecasted 
spatially-distributed natural hazard across Europe is converted into a pan-European 
map with hazard classes. This hazard map combined with the impact matrix gives the 
forecasted impacts across Europe. The example of the air quality forecast on a 
particular day, illustrates that the forecasted impact in Crete is higher than in the 
mainland (Peloponnese), although the forecasted hazard is more severe in the latter. 
The same applied to the example of the forecasted impact of heatwaves; although the 
hazard was more severe in some places (e.g. Central Spain) the impact was lower 
than in some places in Germany. The bottom-up approach has also been used at the 
regional level (Catalonia). In this case, forecasted flood depths are combined with 
several socio-economic exposure and vulnerability layers to quantitatively assess the 
impacts in three categories (namely, population present in the flooded areas, economic 
losses, and affected critical infrastructures). 

An alternative approach to forecast impacts is also described. This top-down approach 
starts with reported impacts of natural hazards and combines these with levels of 
natural hazards to develop hazard impact functions. These functions are unique for a 
certain impact and region. Knowing these impact functions across Europe allows to 
forecasts impacts when a forecasted hazard map becomes available. The top-down 
approach is elaborated to forecast drought impacts in some German regions and 
specific impacts. The examples show that the drought impacts in some cases can be 
forecasted 2-4 months ahead.  
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Annex I: Validation, verification and evaluation: wider context, other 
WPs (top), and focus of each of WPs (bottom) 

 
 

 
  



  
ANYWHERE Deliverable Report  
Grant Agreement: 700099 

 
Deliverable 2.5  Page 166  

 

Annex II: Metrics used to assess forecasting skill 

The continuous ranked probability skill score (CRPS) is a measure of the integrated 
squared difference between the cumulative distribution function of the forecasts and 
the corresponding cumulative distribution function of the proxy for observations. 

The probability of detection (POD) is the fraction of observed events that is forecasted 
correctly The range of POD is between 0 and 1, where 1 represents the good end, and 
0 means no prediction skill. 

In a reliability diagram, the observed frequency is plotted against the forecast 
probability which is divided in to a number of bins. Forecasts are perfectly reliable if 
the curve lies on the diagonal. If the curve lies above the diagonal it indicates under-
forecasting, and if below over-forecasting. The frequency of forecasts in each 
probability bin are shown in the histogram and the climatology line shows the 
climatological probability of the precipitation type during verification period. 

The relative operating characteristic (ROC) curve (Jolliffe and Stephenson, 2011) 
measures the ability of a probabilistic forecast to discriminate between an event and 
no event (in this case precipitation). For a given intensity threshold and a range of 
probability thresholds between 0 and 1 for a yes/no decision, the curve is constructed 
by plotting the probability of detection (POD) against the false alarm ratio, or probability 
of false detection (POFD), for the given probability thresholds. The area under the 
curve (AUC) can be used as a summary statistic that measures potential skill. 

Area under the ROC curve (AUC) measures the resolution, which means the ability of 
the model to discriminate different outcomes of forecast distributions with events and 
non-events. Model that forecasts always the climatological probability has perfect 
reliability but no resolution. For perfect forecast AUC is 1 and for random forecast it is 
0.5. 

The Brier skill score (BSS) is widely used in hydrometeorology for quantifying the 
accuracy of probabilistic predictions. It is the mean of squared difference between the 
paired binary observations (o) and probability forecasts (f ): 

BS = C
(
∑ (Eᵢ − Hᵢ)²(
JKC . 

In the equation, probabilistic forecast (yi) have value between 0 and 1, and observation 
(oi) value 0 or 1. The BS has values from 0 to 1 and gives smaller values for better 
forecasts. The BS can be decomposed into the sum of three components: uncertainty, 
reliability, and resolution. Uncertainty is dependent only on observations, so BS is a 
summary score of reliability and resolution of the forecasts. 

The Brier skill score measures the relative improvement of the BS of investigated 
forecast model compared to the BS of the reference model, usually sample 
climatology: 

BSS = 1 - LM

LM43N
. 
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The BSS have a range of -∞ to 1. Positive values stand for a more accurate model 
than reference, and negative values indicate that model is less accurate than 
reference. If the BSS is 0 both models have equal skill. 

The economic value of probabilistic precipitation type forecasts can be evaluated with 
cost/loss decision model. Relative economic value tells the relative improvement in 
economic value between climatological and perfect forecasts and gives information 
that can be used in decision making when precautionary actions are needed to prevent 
costly danger situations (e.g. using anti-icing to protect an aircraft against icing in-
flight). In the model, taking an action causes a cost even if an event occurs or not, and 
a loss when action is not taken but the event occurs. If precautionary action is not taken 
and event does not occur the cost and loss is zero. The cost and loss are different for 
different users; therefore, the economic value is plotted as a function of cost-loss ratio. 
The lower the cost-loss ratio is, the larger the loss is in comparison to the cost.  
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Annex III: Background information to FMI snow-load model 

Forest damage caused by snow loading on trees occurs frequently in boreal 
environments. On a global scale, snow-induced damage to the forest ecosystem 
dynamics is not considered as a major natural disturbance (e.g. Seidl et al. 2011), 
however, it has regional importance both in Central and Northern Europe. It is 
estimated, in addition to northern parts of the continent, also in the mountainous 
regions e.g. in the Alps and Pyrenees, the amount of timber damaged by snow during 
a typical year vary between one and 4 million m3 (Nykänen et al., 1997; Schelhaas et 
al., 2003, Martín-Alcón et al., 2010). 

Common forms of snow-induced forest damage include stem breakage and bending 
or leaning of stems, but trees can also be uprooted if the soil is unfrozen (Petty and 
Worrell 1981; Valinger et al. 1994; Nykänen et al. 1997). Tree type, positioning and 
stand characteristics control the resistance of trees to snow, and some tree species 
are thus more vulnerable to snow damage than others, e.g. conifers are often 
considered to be most badly affected (Nykänen et al., 1997) but, for instance, birches 
are vulnerable for bending (Martiník and Mauer, 2012). 

The snow load accumulation on the tree canopy introduces a high risk for the trees to 
fall or their branches to break on the transmission lines causing possible long-lasting, 
and therefore life-threatening, power-cuts in rural areas with cold temperatures. This 
was witnessed in Finland in winter 2017-2018, where extreme snow load conditions 
and extensive snowfalls engaged close to 300 electricians to return the power and 
telecommunication connections to over 3000 households and occupied civil protection 
authorities with military assistance to provide help to households without electricity for 
several days. Economic damages to forest are approximated to be close to 50 million 
euros. 

The concrete prevention measures include e.g. burying the transmission lines or 
logging the trees around transmission lines, however, there are economic and 
pragmatic limitations in practical implementation in rural areas. And although a warning 
of the threatening snow-load event can be issued beforehand, the damages to forest 
are impossible to prevent. Nevertheless, the warning and forecasting of snow load 
accumulation are found to be useful and essential for both the power and 
telecommunication companies and the authorities to increase the self-preparedness 
and planning of resources. 

Finnish Meteorological Institute provides forecasts of snow load accumulation on 
canopy and transmission lines based on an experimental model. The model separates 
the four different types (rime, dry snow, wet snow, and frozen snow) of snow load, with 
the main forming processes being riming and wet snow accumulation. The rimed snow 
load accumulates when the super-cooled cloud droplets freeze to surfaces. 
Temperature and wind conditions affect snow density, and because of favorable 
environmental conditions, riming increases with height and is more common in the 
trees on hills, than in the valleys (Jalkanen and Konôpka 1998; Jalkanen and Mattila 
2000). Wet snow load is formed when the melting snow is attached to trees. 
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Temperatures are typically close to 0…+0.5 degree Celsius, in addition, favorable wind 
direction and speed (3-6 m/s) enforces the packing of the wet snow to canopy or 
transmission lines. The removal of the snow load is occurring typically by melting and 
moderate wind conditions shake the snow off, but too strong winds can break the trees 
or branches weaken under the heavy load. 

The FMI model on snow load has been used operationally to predict heavy crown snow 
loads over a decade, and the parameters of the model have evolved based on the 
experience of model performance in different weather situations. Hence the model 
parameters are empirical and based on statistics, not physics. There have been model 
verification studies, e.g. Lehtonen et al. (2014), where the spatial occurrence of 
different snow load types was studied and compared to a simple model (Gregow et al., 
2008) in Finland covering years from 1961 to 2010. The climatology was built using 
meteorological observations at 29 locations across Finland, classified daily images of 
canopy snow cover at the Hyytiälä forestry field station located in the region of 
Pirkanmaa and with the help of two short case studies. It was concluded that the forests 
most prone to heavy riming are those located on tree-covered hills in northern Finland. 
This is despite the fact that weather conditions most favorable for riming occur most 
frequently in the interior of western Finland as well as in the hills and fells in the north. 
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Annex IV: Projections for Universal Thermal Climate Index 

Studies on future projections for UTCI have been performed both at the global and 
local level. At the global level, Kjellstrom et al. (2017) investigated the future UTCI 
bioclimate 2071-2099 (1981-2010 as baseline, ISI-MIP data, HadGEM and GFDL 
models) under a RCP6.0 greenhouse gas scenario. The RCP6.0 scenario, where RPC 
stands for representative concentration pathways28, considers lower emissions than 
RCP8.5 (worst future scenario) due to the application of some mitigation strategies 
and technologies. CO2 concentration is predicted to rise less rapidly but still reaching 
660 ppm by 2100, and total radiative forcing to stabilise shortly after 2100 (van Vuuren 
et al., 2011). The result of the projection is shown in Figure IV-1.  

Map 1 on the top level (Fig. IV-1) shows the areas currently experiencing no heat 
stress, limited heat stress, strong or more intense heat stress. Map 2 (Fig. IV-1) shows 
that heat stress levels are generally predicted to increase all over the world. This result 
is backed up by studies carried at more local level, from Brazil to the Tibetan plateau 
(De Souza Hacon; 2019; Chi et al. 2018). Europe will also witness an increase in heat 
stress conditions. In the highly populated areas of Western-Central Europe a large 
population will be exposed to this change. For instance, in Luxembourg - with its dense 
population and the large cross-border commuter flows - cold stress levels are expected 
to decrease significantly in the near future up to 2050, whereas the increase in heat 
stress will turn statistically significant in the far future up to 2100 for an emission 
scenario with rapid economic growth, a balanced use of energy resources, and an 
increasing global population until the middle of this century (Lokys et al., 2015). 

                                            
28  There are four greenhouse gas concentration trajectories adopted by the IPCC for its Fifth 
Assessment Report (AR5) in 2014 describing four possible climate futures: RCP2.6, RCP4.5, RCP6.0 
and RCP8.5. Relative to 1850–1900, global surface temperature change for the end of the twenty-first 
century (2081–2100) is projected to likely exceed 1.5°C for RCP4.5, RCP6.0 and RCP8.5 (high 
confidence). Warming is likely to exceed 2°C for RCP6.0 and RCP8.5 (high confidence), more likely 
than not to exceed 2°C for RCP4.5 (medium confidence), but unlikely to exceed 2°C for RCP2.6 
(medium confidence) (See WGI SPM E.1, 12.4.1, Table 12.3, available from https://ar5-
syr.ipcc.ch/topic_futurechanges.php). 
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Figure IV-1: Maps of UTCI monthly mean levels in the shade in 67,000 grid cells 
for the hottest month (Kjellstrom et al., 2017). 
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Annex V: Projections of air quality 

Anticipating future air quality is a major concern and it has been the focus of many 
atmospheric chemistry research projects over the past decades. We here report the 
results from two recent studies on RAQ forecasts under a future climate for two 
pollutants considered in ANYWHERE, namely ozone and particulate matter. 

One study has been carried out by Colette et al. on ozone (2012). In their analysis an 
ensemble of air quality models covering both regional and global spatial scales were 
implemented in a coordinated manner for future projections of anthropogenic 
emissions at the 2030 horizon. The two scenarios explored were developed in the 
framework of the Global Energy Assessment (Riahi et al., 2012). They include identical 
measures for air quality legislation but different climate policies, namely one of the 
scenarios is a baseline (reference), whereas the other limits global warming to 2°C by 
the end of the century (sustainable). Colette et al. report that ozone precursors such 
as NOx will drop down to 30% to 50% of their current levels, depending on the scenario. 
As a result, annual mean ozone will slightly increase in NOx saturated areas, but the 
overall ozone burden will decrease substantially (Figures V-1 and V-2).  

Future European particulate matter concentrations have also been evaluated under 
the influence of climate change and anthropogenic emission reductions 
(Lacressonnière et al. 2017). Specifically, 30-year simulations for present and future 
scenarios were performed with an ensemble of four regional chemical 
transport models and +2°C scenarios (RCP4.5) were issued from different regional 
climate simulations. Results showed a large reduction of PM10 and PM2.5 
concentrations in a +2°C climate over Europe, which can be mostly attributed to 
emission reduction policies. Under a current legislation scenario, annual PM10 could 
be reduced by between 1.8 and 2.9 μg m−3 (14.1–20.4%). If maximum technologically 
feasible emission reductions were implemented, further reductions of 1.4–
1.9 μg m−3 (18.6–20.9%) are highlighted. 
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Figure V-1: Panels a, b, c, d: Ensemble median of average NO2 concentrations 
(µg m−3) over the 10 yr of simulation for (a) the GEA 2005 emissions, (b) the 
EMEP 1998–2007 emissions, (c) “reference” 2030 and (d) “sustainable” 2030. 
Panels e, f: the difference between “reference” 2030 and 2005 and between 
“sustainable” 2030 and 2005, respectively (Colette et al. 2012). 
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Figure V-2: Same as Figure V-1, but for O3 (µg m−3, Colette et al. 2012). 
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Annex VI: Projections of drought 

One of the first large�scale studies that used early�twenty�first�century emission 
scenarios (IPPC’s SRES) to investigate future drought characteristics was done by 
Arnell (2003). Previous work was based on climate scenarios from the 1990s and 
largely focussed on annual flow. Arnell (2003) applied a single hydrological model that 
was driven by the output of several climate models and emission scenarios. An 
important finding was that the coefficient of variation of annual runoff is projected to 
increase, which will lead to higher frequency of drought in runoff in 2050, particularly 
in parts of Europe and southern Africa. Several years later, multi�global hydrological 
models were introduced in the WaterMIP project to explore the impact of global 
warming on hydrological extremes (Harding et al., 2011; Corzo Perez et al., 2011), 
using the output from multi�climate models and multi�emission scenarios (SRES). 
In the framework of WaterMIP, uncertainty in future hydrological drought was explored 
by including only those models that performed reasonably in the past (Van Huijgevoort 
et al., 2014), see Figure VI-1. 

 
Figure VI-1: Relative change in low flows (Q80) between future period and 
control period for representative river basins across the globe obtained from a 
multi-model experiment (Van Huijgevoort et al., 2014). Positive means an 
increase in future low flows, whereas negative implies the opposite. Shading 
indicates model agreement (the darker the more models agree).  

Single large�scale models were still used to investigate specific drought aspects. For 
example, Van Lanen et al. (2013) and Wanders and Van Lanen (2015) introduced the 
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similarity index, based on the bivariate probability distributions of the drought duration 
and deficit volume. A single hydrological model was also used to illustrate how the 
European river network will be affected by future drought (Forzieri et al., 2014). This 
model was also applied to explore the impact of human influences on future drought. 
The Inter�Sectoral Impact Model Intercomparison Project (ISI�MIP) was introduced 
as a follow�up to WaterMIP. In ISI�MIP, the most recent emission scenarios, RCPs, 
were used, and, in addition to the natural hazard, inter�sectoral impacts were 
assessed. Prudhomme et al. (2014) and Wanders et al. (2019) provide a 
comprehensive overview of future drought (multi�RCPs, multi�climate models, 
multi�hydrological models), including an uncertainty measure, and the influence of 
large�scale models and climate models. Single hydrological models were applied to 
study human impacts on future drought – for example, the influence of reservoirs 
(Wanders and Wada, 2015), or the adaptation to a gradually changing hydrological 
regime (Wanders et al., 2015). 
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Annex VII: Future change of snow load 
The risk on snow damage is strongly dependent upon weather and climatological 
variables. Temperature influences the moisture content, i.e. in the temperature range 
close to zero degrees the precipitating snow effectively attaches to tree crowns and 
branches (Solantie, 1994). Therefore, for impacts related from accumulated snow load, 
the accretion of heavy wet snow poses the greatest risk (Lehtonen et al., 2016). 
Moderate wind speeds enhance snow accumulation, but on the other hand, strong 
winds dislodge most of the snow from the tree crowns. And topography also plays an 
important role, largely because rime accumulation is most efficient in places located 
higher terrains but also the orographic effects add the precipitation. 

The FMI snow load model is an empirical algorithm, based on a tuned parametrization 
of accumulation and removal terms of estimated snow load for four different snow load 
types. It has been used to examine the impacts of projected climate change on heavy 
snow loads on Finnish forests by Lehtonen et al. (2016). For snow load modelling, they 
used daily data from five global climate models under representative concentration 
pathway (RCP) scenarios RCP4.5 and RCP8.5, where they statistically downscaled 
the modelled values onto a high-resolution grid using a quantile-mapping method. The 
derived results suggest that the projected climate warming regionally causes 
asymmetric response on heavy snow loads. In eastern and northern Finland, the 
annual maximum snow loads on tree crowns were seen to increase during the present 
century, as opposed to southern and western parts of the country. The change was 
rather similar both for all the snow load types (heavy rime, wet snow and frozen snow), 
only the heaviest dry snow loads were projected to decrease over almost the whole of 
Finland. They concluded that the risk for snow-induced forest damage is likely to 
increase in the future in the eastern and northern parts of Finland. The increase is 
partly due to the increase in wet snow hazards but also due to more favourable 
conditions for rime accumulation in a future climate that is more humid but still cold 
enough (Lehtonen et al., 2016). An example of the projected results is shown in 
Figure VII-1. 
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Figure VII-1: The annual maximum rime loads (a), dry snow loads (b), wet snow 
loads (c), frozen snow loads, and (d) total snow loads based on the FMI method 
and (e) total snow loads based on the (Gregow et al. 2008) method (f) for the 
period 2070–2099 under the RCP8.5 scenario as a multi-model mean. Contours 
show the multi-model mean change from 1980–2009 to 2070–2099 (Lehtonen 
et al. 2016). 
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Annex VIII: TRL Scale in Horizon 2020 
The Technology Readiness Level (TRL) scale was introduced into the EU funded 
projects arena in 2014, as part of the Horizon 2020 framework program (European 
Commission, 2014). If you are planning to submit a Horizon 2020 project proposal, 
even more so if your project is technology oriented – this article is for you. It is important 
to understand the exact implications of this scale on your project and the ways it is 
used to present, evaluate and measure the progress of a Horizon 2020 or ERC project. 
In this article, we will discuss exactly that. Let’s start by understanding the 
fundamentals of the TRL scale and how it works. 

What is the TRL Scale? 

The Technology Readiness Level (TRL) scale was originally defined by NASA in the 
1990’s as a means for measuring or indicating the maturity of a given technology. The 
TRL spans over nine levels as follows: 

TRL 1  Basic principles observed 
TRL 2  Technology concept formulated 
TRL 3  Experimental proof of concept 
TRL 4  Technology validated in lab 
TRL 5  Technology validated in relevant environment (industrially relevant 
environment in the case of key enabling technologies) 
TRL 6  Technology demonstrated in relevant environment (industrially relevant 
environment in the case of key enabling technologies) 
TRL 7  System prototype demonstration in operational environment 
TRL 8  System complete and qualified 
TRL 9  Actual system proven in operational environment (competitive 
manufacturing in the case of key enabling technologies; or in space) 
 

Typically, many products go through the various stages of the TRL scale in their life 
cycle. It is possible that iterations will be needed between various TRL levels, 
especially during the development phase, although not limited to that. The TRL is 
perceived as an effective way to indicate the development stage of a given technology 
or product. 


